2025-6-8- 13
  • Home
  • About Journal
  • Editorial Board
  • Author
    Instruction
    Copyright Agreement
  • Ethcis Statement
  • Subscribe
  • Contact
  • 中文
Home > Archive>Volume 21, Issue 6, 2020 >1415-1423. DOI:10.13430/j.cnki.jpgr.20200629002 Online First
PDF HTML XML Export Cite reminder
Research Progress of Germplasm Resources of Pea and Its Wild Relatives
DOI:
10.13430/j.cnki.jpgr.20200629002
CSTR:
Author:
  • LIU Rong

    LIU Rong

    Center for Crop Germplasm Resources, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences
    Find this author on All Journals
    Find this author on BaiDu
    Search for this author on this site
  • YANG Tao

    YANG Tao

    Center for Crop Germplasm Resources, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences
    Find this author on All Journals
    Find this author on BaiDu
    Search for this author on this site
  • HUANG Yu-ning

    HUANG Yu-ning

    Center for Crop Germplasm Resources, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences
    Find this author on All Journals
    Find this author on BaiDu
    Search for this author on this site
  • ZONG Xu-xiao

    ZONG Xu-xiao

    Center for Crop Germplasm Resources, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences
    Find this author on All Journals
    Find this author on BaiDu
    Search for this author on this site
Affiliation:

Center for Crop Germplasm Resources, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences

Clc Number:

Fund Project:

National Natural Science Foundation of China (31801428), the China Agriculture Research System from the Ministry of Agriculture of China (CARS-08), the Crop Germplasm Resources Protection (2019NWB036-07), the Agricultural Science and Technology Innovation Program (ASTIP) in CAAS, the National Infrastructure for Crop Germplasm Resources Project from the Ministry of Science and Technology of China (NICGR2019), the National Key Research and Development Program of China (2017YFE0105100).

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference [90]
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Pea is one of the earliest domesticated crops. It is not only an important economic and grain-vegetable-forage crop widely grown globally, but also has significant ecological advantages in the sustainable development of agriculture. This article reviews the important research progress of the past decades in the aspects of the domestication of pea, systematic classification of Pisum, preservation status and research and utilization of germplasm resources of pea and its wild relative. Although there have been many studies, the domestication process of pea is still unclear and the systematic classification of Pisum has long been controversial. Combining the previous different classification views, phylogenetic research results, as well as our current research results, this article puts forward a comprehensive classification proposal on Pisum to make clear about pea wild relatives, thereby laying a foundation to better understanding of the domestication process of pea and make full use of the germplasm resources of pea wild relatives. In addition, in view of the current research status of pea wild relatives, relevant suggestions are made for their future research, so as to give full play to their huge potential in breeding improvement of pea.

    Key words:pea; wild relatives; domestication; systematic classification; germplasm resources; breeding improvement
    Reference
    [1] Diamond J. Evolution, consequences and future of plant and animal domestication. Nature, 2002, 418: 700-707
    [2] Doebley J F, Gaut B S, Smith B D. The molecular genetics of crop domestication. Cell, 2006, 127: 1309-1321
    [3] Purugganan M D, Fuller D Q. The nature of selection during plant domestication. Nature, 2009, 457: 843-848
    [4] Khush G S. Green revolution: the way forward. Nature Reviews Genetics, 2001, 2: 815-822
    [5] Evenson R E, Gollin D. Assessing the impact of the green revolution, 1960 to 2000. Science, 2003, 300: 758-762
    [6] Godfray H C, Beddington J R, Crute I R, Haddad L, Lawrence D, Muir J F, Pretty J, Robinson S, Thomas S M, Toulmin C. Food security: the challenge of feeding 9 billion people. Science, 2010, 327: 812-818
    [7] Lobell D B, Schlenker W, Costa-Roberts J. Climate trends and global crop production since 1980. Science, 2011, 333: 616-620
    [8] Bevan M W, Uauy C, Wulff B B H, Zhou J, Krasileva K, Clark M D. Genomic innovation for crop improvement. Nature, 2017, 543: 346
    [9] Hickey L T, N. Hafeez A, Robinson H, Jackson S A, Leal-Bertioli S C M, Tester M, Gao C, Godwin I D, Hayes B J, Wulff B B H. Breeding crops to feed 10 billion. Nature Biotechnology, 2019
    [10] Eyre-Walker A, Gaut R L, Hilton H, Feldman D L, Gaut B S. Investigation of the bottleneck leading to the domestication of maize. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95: 4441-4446
    [11] Hyten D L, Song Q, Zhu Y, Choi I Y, Nelson R L, Costa J M, Specht J E, Shoemaker R C, Cregan P B. Impacts of genetic bottlenecks on soybean genome diversity. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103: 16666-16671
    [12] Zhu Q, Zheng X, Luo J, Gaut B S, Ge S. Multilocus analysis of nucleotide variation of Oryza sativa and its wild relatives: severe bottleneck during domestication of rice. Molecular Biology and Evolution, 2007, 24: 875-888
    [13] Tanksley S D, McCouch S R. Seed banks and molecular maps: Unlocking genetic potential from the wild. Science, 1997, 277: 1063-1066
    [14] Munoz N, Liu A, Kan L, Li M W, Lam H M. Potential uses of wild germplasms of grain legumes for crop improvement. International Journal of Molecular Sciences, 2017, 18: 28
    [15] Gepts P. The contribution of genetic and genomic approaches to plant domestication studies. Current Opinion in Plant Biology, 2014, 18: 51-59
    [16] Swinnen G, Goossens A, Pauwels L. Lessons from Domestication: Targeting Cis-regulatory elements for crop improvement. Trends in Plant Science, 2016, 21: 506-515
    [17] Brozynska M, Furtado A, Henry R J. Genomics of crop wild relatives: expanding the gene pool for crop improvement. Plant Biotechnology Journal, 2016, 14: 1070-1085
    [18] Dole?el J, Greilhuber J. Nuclear genome size: Are we getting closer? Cytometry Part A, 2010, 77A: 635-642
    [19] Smykal P, Aubert G, Burstin J, Coyne C J, Ellis N T H, Flavell A J, Ford R, Hybl M, Macas J, Neumann P, McPhee K E, Redden R J, Rubiales D, Weller J L, Warkentin T D. Pea (Pisum sativum L.) in the genomic era. Agronomy, 2012, 2: 74-115
    [20] Tayeh N, Aubert G, Pilet-Nayel M L, Lejeune-Henaut I, Warkentin T D, Burstin J. Genomic tools in pea breeding programs: Status and perspectives. Frontiers in Plant Science, 2015, 6
    [21] FAOSTAT. http://www.fao.org/faostat/en/#data. 2020
    [22] MacWilliam S, Wismer M, Kulshreshtha S. Life cycle and economic assessment of Western Canadian pulse systems: The inclusion of pulses in crop rotations. Agricultural Systems, 2014, 123: 43-53
    [23] Ellis T H N, Hofer J M I, Timmerman-Vaughan G M, Coyne C J, Hellens R P. Mendel, 150 years on. Trends in Plant Science, 2011, 16: 590-596
    [24] Reid J, Ross J. Mendel's genes: toward a full molecular characterization. Genetics, 2011, 189: 3-10
    [25] Zohary D, Hopf M. Domestication of plants in the old world.3rd ed.Oxford: Oxford University Press. 2000
    [26] Riehl S, Zeidi M, Conard N J. Emergence of agriculture in the foothills of the Zagros Mountains of Iran. Science, 2013, 341: 65-67
    [27] Smykal P, Coyne C, Redden R, Maxted N. Peas, In: Genetic and genomic resources of grain legume improvement, Singh M., Upadhyaya H. D., Bisht, I. S. eds. Elsevier Inc. London, UK. 2013, pp: 41-80
    [28] Zohary D, Hopf M. Domestication of pulses in the Old World. Science, USA, 1973, 182: 887-894
    [29] Weeden N F. Genetic changes accompanying the domestication of Pisum sativum: Is there a common genetic basis to the ‘Domestication syndrome’ for legumes? Annals of Botany, 2007, 100: 1017-1025
    [30] Miki? A, Medovic A, Jovanovic Z, Stanisavljevic N. Integrating archaeobotany, paleogenetics and historical linguistics may cast more light onto crop domestication: the case of pea (Pisum sativum). Genetic Resources and Crop Evolution, 2014, 61: 887-892
    [31] Smykal P, Hradilova I, Trneny O, Brus J, Rathore A, Bariotakis M, Das R R, Bhattacharyya D, Richards C, Coyne C J, Pirintsos S. Genomic diversity and macroecology of the crop wild relatives of domesticated pea. Scientific Reports, 2017, 7: 12
    [32] Smykal P, Trneny O, Brus J, Hanacek P, Rathore A, Das Roma R, Pechanec V, Duchoslav M, Bhattacharyya D, Bariotakis M, Pirintsos S, Berger J, Toker C. Genetic structure of wild pea (Pisum sativum subsp. elatius) populations in the northern part of the Fertile Crescent reflects moderate cross-pollination and strong effect of geographic but not environmental distance. PLoS One, 2018, 13: e0194056
    [33] Hradilova I, Duchoslav M, Brus J, Pechanec V, Hybl M, Kopecky P, Smrzova L, Stefelova N, Vaclavek T, Bariotakis M, Machalova J, Hron K, Pirintsos S, Smykal P. Variation in wild pea (Pisum sativum subsp. elatius) seed dormancy and its relationship to the environment and seed coat traits. PeerJ, 2019, 7: 32
    [34] Kreplak J, Madoui M A, Capal P, Novak P, Labadie K, Aubert G, Bayer P E, Gali K K, Syme R A, Main D, Klein A, Berard A, Vrbova I, Fournier C, d'Agata L, Belser C, Berrabah W, Toegelova H, Milec Z, Vrana J, Lee H, Kougbeadjo A, Terezol M, Huneau C, Turo C J, Mohellibi N, Neumann P, Falque M, Gallardo K, McGee R, Tar'an B, Bendahmane A, Aury J M, Batley J, Le Paslier M C, Ellis N, Warkentin T D, Coyne C J, Salse J, Edwards D, Lichtenzveig J, Macas J, Dolezel J, Wincker P, Burstin J. A Reference genome for pea provides insight into legume genome evolution. Nature Genetics, 2019, 51: 1411-1422
    [35] Kosterin O E, Bogdanova V S. Relationship of wild and cultivated forms of Pisum L. as inferred from an analysis of three markers, of the plastid, mitochondrial and nuclear genomes. Genetic Resources and Crop Evolution, 2008, 55: 735-755
    [36] Kosterin O. Abyssnian pea (Lathyrus schaeferi Kosterin pro Pisum abyssinicum A. Br.) – a problematic taxon. Acta Biologica Sibirica, 2017, 3(3): 97–110
    [37] Govorov L I. Goroch (Peas). Kulturnaja Flora SSR (in Russian). Moscow: State Printing Of?ce, 1937, pp. 229-336
    [38] Ellis T H N, Poyser S J, Knox M R, Vershinin A V, Ambrose M J. Polymorphism of insertion sites of Ty1-copia class retrotransposons and its use for linkage and diversity analysis in pea. Molecular and General Genetics, 1998, 260: 9-19
    [39] Vershinin A V, Allnutt T R, Knox M R, Ambrose M J, Ellis T H N. Transposable elements reveal the impact of introgression, rather than transposition, in Pisum diversity, evolution, and domestication. Molecular Biology and Evolution, 2003, 20: 2067-2075
    [40] Jing R C, Vershinin A, Grzebyta J, Shaw P, Smykal P, Marshall D, Ambrose M J, Ellis T H N, Flavell A J. The genetic diversity and evolution of field pea (Pisum) studied by high throughput retrotransposon based insertion polymorphism (RBIP) marker analysis. BMC Evolutionary Biology, 2010, 10: 20
    [41] Trneny O, Brus J, Hradilova I, Rathore A, Das R R, Kopecky P, Coyne C J, Reeves P, Richards C, Smykal P. Molecular evidence for two domestication events in the pea crop. Genes, 2018, 9: 20
    [42] Weeden N F. Domestication of pea (Pisum sativum L.): The case of the Abyssinian pea. Frontiers in Plant Science, 2018, 9
    [43] Maxted N, Ambrose M. Peas (Pisum L.). In: Maxted N, Bennet SJ (eds) Plant genetic resources of legumes in the Mediterranean. Kluwer, Dordrecht, pp 181–190. 2000
    [44] Smykal P, Kenicer G, Flavell A J, Corander J, Kosterin O, Redden R J, Ford R, Coyne C J, Maxted N, Ambrose M J, Ellis N T H. Phylogeny, phylogeography and genetic diversity of the Pisum genus. Plant Genetic Resources-Characterization and Utilization, 2011, 9: 4-18
    [45] Smykal P, Coyne C J, Ambrose M J, Maxted N, Schaefer H, Blair M W, Berger J, Greene S L, Nelson M N, Besharat N, Vymyslicky T, Toker C, Saxena R K, Roorkiwal M, Pandey M K, Hu J, Li Y H, Wang L X, Guo Y, Qiu L J, Redden R J, Varshney R K. Legume crops phylogeny and genetic diversity for science and breeding. Critical Reviews in Plant Sciences, 2015, 34: 43-104
    [46] Marx G A. Classi?cation, genetics and breeding. In: Sutcliffe JF and Pate JS (eds) Physiology of the Garden Pea. NewYork: Academic Press, 1977, pp. 21-43
    [47] Davis P H. Pisum L. In: Davis P H (ed.) Flora of Turkey and East Aegean Islands. vol.3. Edinburg: Edinburg University Press, 1970, pp: 370-373
    [48] Ben-Ze'ev N, Zohary D. Species relationships in the genus Pisum L. Israel Journal of Botany, 1973, 22: 73-91
    [49] Kupicha F K. Vicieae (Adans.) DC. (1825) nom conserv prop. In: Polhill RM and Raven PH (eds) Advances in legume systematics 1. Kew: Royal Botanical Gardens, 1981, pp: 377-381
    [50] Makasheva R K. Gorokh (pea). In: Korovina ON (ed.) Leningrad: Kulturnaya Flora SSR, Kolos, 1979, pp: 1-324 (in Russian)
    [51] Waines J G. The Biosystematics and Domestication of Peas (Pisum L.). Bulletin of the Torrey Botanical Club, 1975, 102
    [52] Palmer J D, Jorgensen R A, Thompson W F. Chloroplast DNA variation and evolution in Pisum: patterns of change and phylogenetic analysis. Genetics, 1985, 109: 195-213
    [53] Jing R, Johnson R, Seres A, Kiss G, Ambrose M J, Knox M R, Ellis T H N, Flavell A J. Gene-based sequence diversity analysis of field pea (Pisum). Genetics, 2007, 177: 2263-2275
    [54] Pearce S R, Knox M, Ellis T H, Flavell A J, Kumar A. Pea Ty1-copia group retrotransposons: transpositional activity and use as markers to study genetic diversity in Pisum. Molecular and General Genetics, 2000, 263: 898-907
    [55] Zong X X, Ford R, Redden R R, Guan J P, Wang S M. Identification and analysis of genetic diversity structure within Pisum genus based on microsatellite markers. Agricultural Sciences in China, 2009, 8: 257-267
    [56] Kosterin O E, Zaytseva O O, Bogdanova V S, Ambrose M J. New data on three molecular markers from different cellular genomes in Mediterranean accessions reveal new insights into phylogeography of Pisum sativum L. subsp elatius (Bieb.) Schmalh. Genetic Resources and Crop Evolution, 2010, 57: 733-739
    [57] Zaytseva O, Gunbin K V, Mglinets A V, Kosterin O E. Divergence and population traits in evolution of the genus Pisum L. as reconstructed using genes of two histone H1 subtypes showing different phylogenetic resolution. Gene, 2015, 556: 235-244
    [58] Bogdanova V S, Mglinets A V, Shatskaya N V, Kosterin O E, Solovyev V I, Vasiliev G V. Cryptic divergences in the genus Pisum L. (peas), as revealed by phylogenetic analysis of plastid genomes. Molecular Phylogenetics and Evolution, 2018, 129: 280-290
    [59] Kosterin O. On three cultivated subspecies of pea (Pisum sativum L.). Vavilov Journal of Genetics and Breeding, 2017, 21: 694-700
    [60] Ali Z, Qureshi A S, Ali W, Gulzar H, Nisar M, Ghafoor A. Evaluation of genetic diversity present in pea (Pisum sativum L.) germplasm based on morphological traits, resistance to powdery mildew and molecular characteristics. Pakistan Journal of Botany, 2007, 39: 2739-2747
    [61] Sardana S, Mahajan R K, Gautam N K, Ram B. Genetic variability in pea (Pisum sativum L.) germplasm for utilization. SABRAO Journal of Breeding and Genetics, 2007, 39: 31-41
    [62] Smykal P, Horacek J, Dostalova R, Hybl M. Variety discrimination in pea (Pisum sativum L.) by molecular, biochemical and morphological markers. Journal of Applied Genetics, 2008, 49: 155-166
    [63] Smykal P, Hybl M, Corander J, Jarkovsky J, Flavell A J, Griga M. Genetic diversity and population structure of pea (Pisum sativum L.) varieties derived from combined retrotransposon, microsatellite and morphological marker analysis. Theoretical and Applied Genetics, 2008, 117: 413-424
    [64] Sarikamis G, Yanmaz R, Ermis S, Bakir M, Yuksel C. Genetic characterization of pea (Pisum sativum) germplasm from Turkey using morphological and SSR markers. Genetics and Molecular Research, 2010, 9: 591-600
    [65] Handerson C, Noren S K, Wricha T, Meetei N T, Khanna V K, Pattanayak A, Datt S, Choudhury P R, Kumar M. Assessment of genetic diversity in pea (Pisum sativum L.) using morphological and molecular markers. Indian Journal of Genetics Plant Breeding, 2014, 74: 205-212
    [66] 李玲, 沈宝宇, 张天静, 杨涛, 刘荣, 宗绪晓. 豌豆种质资源芽期耐旱性评价及耐旱种质筛选. 植物遗传资源学报, 2017, 18: 778-785Li L, Shen B Y, Zhang T J, Yang T, Liu R, Zong X X. Evaluation and screening of pea (Pisum sativum) germplasm resources for drought resistance during germination stage. Journal of Plant Genetic Resources, 2017, 18: 778-785
    [67] Baranger A, Aubert G, Arnau G, Laine A L, Deniot G, Potier J, Weinachter C, Lejeune-Henaut I, Lallemand J, Burstin J. Genetic diversity within Pisum sativum using protein- and PCR-based markers. Theoretical and Applied Genetics, 2004, 108: 1309-1321
    [68] Zong X X, Redden R J, Liu Q C, Wang S M, Guan J P, Liu J, Xu Y H, Liu X J, Gu J, Yan L, Ades P, Ford R. Analysis of a diverse global Pisum sp collection and comparison to a Chinese local P. sativum collection with microsatellite markers. Theoretical and Applied Genetics, 2009, 118: 193-204
    [69] Jing R, Vershinin A, Grzebyta J, Shaw P, Smykal P, Marshall D, Ambrose M J, Ellis T H N, Flavell A J. The genetic diversity and evolution of field pea (Pisum) studied by high throughput retrotransposon based insertion polymorphism (RBIP) marker analysis. BMC Evolutionary Biology, 2010, 10
    [70] Jing R, Ambrose M A, Knox M R, Smykal P, Hybl M, Ramos A, Caminero C, Burstin J, Duc G, van Soest L J M, Swiecicki W K, Pereira M G, Vishnyakova M, Davenport G F, Flavell A J, Ellis T H N. Genetic diversity in European Pisum germplasm collections. Theoretical and Applied Genetics, 2012, 125: 367-380
    [71] Jain S, Kumar A, Mamidi S, McPhee K. Genetic diversity and population structure among pea (Pisum sativum L.) cultivars as revealed by simple sequence repeat and novel genic markers. Molecular Biotechnology, 2014, 56: 925-938
    [72] Burstin J, Salloignon P, Chabert-Martinello M, Magnin-Robert J B, Siol M, Jacquin F, Chauveau A, Pont C, Aubert G, Delaitre C, Truntzer C, Duc G. Genetic diversity and trait genomic prediction in a pea diversity panel. BMC Genomics, 2015, 16
    [73] Teshome A, Bryngelsson T, Dagne K, Geleta M. Assessment of genetic diversity in Ethiopian field pea (Pisum sativum L.) accessions with newly developed EST-SSR markers. BMC Genetics, 2015, 16
    [74] Prakash N, Kumar R, Choudhary V K, Singh C M. Molecular assessment of genetic divergence in pea genotypes using microsatellite markers. Legume Research, 2016, 39: 183-188
    [75] 宗绪晓, 关建平, 顾竟, 王海飞, 马钰. 中国和国际豌豆核心种质群体结构与遗传多样性差异分析. 植物遗传资源学报, 2009, 10: 347-353Zong X X, Guan J P, Gu J, Wang H F, Ma Y. Differentiation on population structure and genetic diversity of pea core collections separately constituted from Chinese landraces and international genetic resources. Journal of Plant Genetic Resources, 2009, 10: 347-353
    [76] Irzykowska L, Wolko B, Swiecicki W. Interval mapping of QTLs controlling some morphological traits in pea. Cellular Molecular Biology Letters, 2002, 7: 417-422
    [77] Tar'an B, Warkentin T, Somers D J, Miranda D, Vandenberg A, Blade S, Bing D. Identification of quantitative trait loci for grain yield, seed protein concentration and maturity in field pea (Pisum sativum L.). Euphytica, 2004, 136: 297-306
    [78] Timmerman-Vaughan G M, Mills A, Whitfield C, Frew T, Butler R, Murray S, Lakeman M, McCallum J, Russell A, Wilson D. Linkage mapping of QTL for seed yield, yield components, and developmental traits in pea. Crop Science, 2005, 45: 1336-1344
    [79] Katoch V, Sharma S, Pathania S, Banayal D K, Sharma S K, Rathour R. Molecular mapping of pea powdery mildew resistance gene er2 to pea linkage group III. Molecular Breeding, 2010, 25: 229-237
    [80] Rai R, Singh A K, Singh B D, Joshi A K, Chand R, Srivastava C P. Molecular mapping for resistance to pea rust caused by Uromyces fabae (Pers.) de-Bary. Theoretical and Applied Genetics, 2011, 123: 803-813
    [81] Aryamanesh N, Zeng Y, Byrne O, Hardie D C, Al-Subhi A M, Khan T, Siddique K H M, Yan G. Identification of genome regions controlling cotyledon, pod wall/seed coat and pod wall resistance to pea weevil through QTL mapping. Theoretical and Applied Genetics, 2014, 127: 489-497
    [82] Leonforte A, Sudheesh S, Cogan N O I, Salisbury P A, Nicolas M E, Materne M, Forster J W, Kaur S. SNP marker discovery, linkage map construction and identification of QTLs for enhanced salinity tolerance in field pea (Pisum sativum L.). BMC Plant Biology, 2013, 13
    [83] Tayeh N, Bahrman N, Devaux R, Bluteau A, Prosperi J M, Delbreil B, Lejeune-Henaut I. A high-density genetic map of the Medicago truncatula major freezing tolerance QTL on chromosome 6 reveals colinearity with a QTL related to freezing damage on Pisum sativum linkage group VI. Molecular Breeding, 2013, 32: 279-289
    [84] Kwon S J, Brown A F, Hu J, McGee R, Watt C, Kisha T, Timmerman-Vaughan G, Grusak M, McPhee K E, Coyne C J. Genetic diversity, population structure and genome-wide marker-trait association analysis emphasizing seed nutrients of the USDA pea (Pisum sativum L.) core collection. Genes Genomics, 2012, 34: 305-320
    [85] Cheng P, Holdsworth W, Ma Y, Coyne C J, Mazourek M, Grusak M A, Fuchs S, McGee R J. Association mapping of agronomic and quality traits in USDA pea single-plant collection. Molecular Breeding, 2015, 35
    [86] Diapari M, Sindhu A, Warkentin T D, Bett K, Tar'an B. Population structure and marker-trait association studies of iron, zinc and selenium concentrations in seed of field pea (Pisum sativum L.). Molecular Breeding, 2015, 35
    [87] Liu R, Fang L, Yang T, Zhang X, Hu J, Zhang H, Han W, Hua Z, Hao J, Zong X. Marker-trait association analysis of frost tolerance of 672 worldwide pea (Pisum sativum L.) collections. Scientific Reports, 2017, 7: 5919
    [88] 顾竟, 李玲, 宗绪晓, 王海飞, 关建平, 杨涛. 豌豆种质表型性状SSR标记关联分析. 植物遗传资源学报, 2011, 12: 833-839Gu J, Li L, Zong X X, Wang H F, Guan J P, Yang T. Association analysis between morphological traits of pea and its polymorphic SSR markers. Journal of Plant Genetic Resources, 2011, 12: 833-839
    [89] Casta?eda-álvarez N P, Khoury C K. Global conservation priorities for crop wild relatives. Nature Plants, 2016, 2: 16022
    [90] Dempewolf H, Eastwood R J, Guarino L, Khoury C K, Müller J V, Toll J. Adapting agriculture to climate change: A global initiative to collect, conserve, and use crop wild relatives. Agroecology and Sustainable Food Systems, 2014, 38: 369-377
    Related
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

Copy
Related Videos

Share
0
Article Metrics
  • Abstract:1331
  • PDF: 3553
  • HTML: 0
  • Cited by: 0
History
  • Received:June 29,2020
  • Revised:July 23,2020
  • Adopted:August 04,2020
  • Online: November 05,2020
  • Published:
Article QR Code
You are the 671135th visitor 京ICP备09069690号-23
® 2025 All Rights Reserved
Supported by:Beijing E-Tiller Technology Development Co., Ltd.
Firefox, Chrome, IE10, IE11 are recommended. Other browsers are not recommended.