EMS-induced Mutagenesis and Phenotypic Variation Analysis in Wheat Variety Jimai 22
CSTR:
Author:
Affiliation:

Wheat Research Institute, Shanxi Agricultural University

Clc Number:

Fund Project:

Key R&D Projects in Shanxi Province(201903D211004-2), National key research and development projects( 2016YFD0101602 ), Biological breeding project of Shanxi Academy of Agricultural Sciences( 17YZGC013), Shanxi Province Science Foundation for Youths(201801D221314)

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    In order to enrich the genetic diversity of common wheat, an EMS (Ethyl Methane Sulfonate)-induced mutagenesis population using the elite variety Jimai 22 was produced and the phenotypic variation in M2 generation plants was analyzed. The seed quality-related traits in M8 mutants showing excellent agronomical performance were further investigated. The results showed that: (1) out of 22599 M2 mutant plants, 5002 showed visible phenotypic variations with a rate of 22.13%. The phenotypic variations on fertility, growth period, ear, awn, leaf, plant type, tiller, plant height, grain color were observed. These mutants with bigger spike, multiple tillers, short stem, single stem, increased grains, no wax, leaf degradation and sterility were detected. (2) In M8 mutagenized lines, the morphological variations on grain shape, grain length, fullness and grain color were found. The variation coefficient regarding to eight quality-related traits was calculated (maximum tensile resistance > tensile area > stability time > sedimentation value > hardness >protein content > wet gluten content > water absorption). Eight mutant lines showing improved performance (in relative to Jimai 22) had been identified. For example, four lines including 403-1, 403-2, 403-3 and 85-2 showed significant improvement on at least 3 characters. Collectively, these mutants provided germplasm resource valuable for wheat breeding and deciphering the gene function.

    Reference
    Related
    Cited by
Get Citation
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:December 07,2020
  • Revised:March 31,2021
  • Adopted:March 31,2021
  • Online: July 08,2021
  • Published:
Article QR Code
You are the th visitor 京ICP备09069690号-23
® 2024 All Rights Reserved
Supported by:Beijing E-Tiller Technology Development Co., Ltd.