Transcriptomics-Metabolomics Combined Analysis Highlight the Mechanism of Testa Pigment Formation in Peanut (Arachis hypogaea L.)
CSTR:
Author:
Affiliation:

1.State Key Laboratory of North China Crop Improvement and Regulation, Laboratory of Hebei Provincial Crop Germplasm Resources, Hebei Agricultural University;2.Hebei Yiyuan Ecological Agriculture Technology Co, Ltd

Clc Number:

Fund Project:

This research was funded by Key Project of Science and Technology Research in Colleges and Universities of the Department of Education in Hebei Province (ZD2019051),Key Project of Science and Technology Research of Modern Seed Industry of the Department of S&T in Hebei Province (19226363D),and Project of Agricultural Science and Technology Park Construction in Baoding City, Hebei Province (2111N004)

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Anthocyanins are plant secondary metabolites with important physiological activities, and deciphering the mechanism of pigment formation has become one of the most important research hotspots. In this study, the peanut varieties including Zizhenzhu (purple testa), Hongzhenzhu (red testa), G110 (pink testa) and Baizhenzhu (white testa) were analyzed using RNA-Seq and liquid chromatography tandem mass spectrometry (LC-MS/MS), by using testa samples harvested at 30 and 45 days after flowering (30 DAF and 45 DAF), respectively. RNA-Seq revealed 32805 differentially expressed genes (DEGs), which were enriched in different number of pathways using KEGG analysis. GO analysis revealed 34, 21 and 19 DEGs which were enriched to the pathways of oxidation-reduction process, anthocyanin-containing compound biosynthetic process and Flavonoid biosynthetic process, respectively. LC-MS/MS analysis showed types of metabolites including proanthocyanidins, petunidin, paeoniflorin, malvadin, delphinium, cyanidin and their derivatives. Procyanidins A1, A2, B2, B3, delphinium and cyanidin were significantly up-regulated in each comparison group, with a variation of 5.82-19.52 on fold. Two pathways consisting of anthocyanin biosynthesis and flavonoid biosynthesis were enriched. The transcriptomic-metabolomics combined analysis showed that flavonoid biosynthesis is the key synthesis pathway for testa color formation, and delphinidin and cyanidin are the main differential metabolites. Out of 20 important genes, each), qRT-PCR analysis showed that PAL, 4CL, IF7MAT, CHI, F3H, DFR, LAR and LDOX were significantly up-regulated; C-CoA and FLS were observably down-regulated at 30 DAF; PAL, HCT-1 and DFR were significantly up-regulated; CHS, C-CoA and FLS were observably down-regulated at 45 DAF. Collectively, these results laid a theoretical foundation for future deciphering the molecular mechanism of peanut testa anthocyanin synthesis, valuable in breeding for peanut varieties with enriched anthocyanin.

    Reference
    Related
    Cited by
Get Citation
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:May 24,2021
  • Revised:July 04,2021
  • Adopted:August 03,2021
  • Online: January 07,2022
  • Published:
Article QR Code
You are the th visitor 京ICP备09069690号-23
® 2024 All Rights Reserved
Supported by:Beijing E-Tiller Technology Development Co., Ltd.