Advances in Research on Premature Senescence in Plants
Author:
Affiliation:

1.Institute of Crop Sciences, Chinese Academy of Agricultural Sciences / National Engineering Laboratory of Crop Molecular Breeding and National Center of Space Mutagenesis for Crop Improvement;2.Pingyin Administrative Examination and Approval Service Bureau of Shandong Province

Fund Project:

Science and Technology Innovation Project of Chinese Academy of Agricultural Sciences,National Wheat Industry Technology System Project (CARS-03)

  • Article
  • | |
  • Metrics
  • |
  • Reference [100]
  • | | | |
  • Comments
    Abstract:

    Senescence,as the final stage of natural development of plants,has an important influence on crop yield. In order to promoting the selection and breeding of new crop varieties and yield improvement, it is important to deeply analyze the regulatory mechanism and influencing factors of premature senescence. Except the stress of natural environment,genetic network of crops is an important factor in regulating plant premature senescence. A variety of metabolic pathways in plants affect the period of senescence onset. Here we reviewed the various physiological,biochemical and yield changes during premature senescence in plants. Premature senescence caused degradation of chlorophyll and other macromolecules,significantly reducd leaf photosynthetic and transportion of nutrients from senescent tissues to young tissues and reproductive organs. The process was accompanied by the accumulation of reactive oxygen species (ROS),decreased the activity of antioxidant enzymes in the cells and upregulated of senescence-associated gene (SAG) expression,which eventually led to premature senescence and reduced plant yield. Premature senescence is a complex and sequential process regulated by multiple genes. We summarized the gene networks regulating premature senescence among different species,and introduced the mechanisms of premature senescence regulation through transcription factor regulation,hormone and protein metabolism. It provides suggestions on the research of premature senescence mechanism and breeding utilization in the future.

    Reference
    [1] Yan H, Sheng M, Wang C, Liu Y, Yang J, Liu F, Xu W, Su Z. AtSPX1-mediated transcriptional regulation during leaf senescence in Arabidopsis thaliana. Plant Science, 2019. 283: 238-246.
    [2] El Mannai Y, Akabane K, Hiratsu K, Satoh-Nagasawa N, Wabiko H. The NAC Transcription Factor Gene OsY37 (ONAC011) Promotes Leaf Senescence and Accelerates Heading Time in Rice. International Journal of Molecular Sciences, 2017. 18(10): 2165.
    [3] 董合忠, 李维江, 唐 薇, 张冬梅. 棉花生理性早衰研究进展. 棉花学报, 2005. 17(1): 5660.Dong H Z, Li W J, Tang W, Zhang D M. Advances in studies on physiological premature senility of cotton. Cotton Science, 2005. 17(1): 5660.
    [4] Heng Y, Wu C, Long Y, Luo S, Ma J, Chen J, Liu J, Zhang H, Ren Y, Wang M, Tan J, Zhu S, Wang J, Lei C, Zhang X, Guo X, Wang H, Cheng Z, Wan J. OsALMT7 Maintains Panicle Size and Grain Yield in Rice by Mediating Malate Transport. Plant Cell, 2018. 30(4): 889-906.
    [5] Cai S, Yu G, Chen X, Huang Y, Jiang X, Zhang G, Jin X. Grain protein content variation and its association analysis in barley. BMC Plant Biology, 2013. 13:35.
    [6] 徐娜, 徐江民, 蒋玲欢, 饶玉春. 水稻叶片早衰成因及分子机理研究进展. 植物学报, 2017. 52(1): 102–112.Xu N, Xu J M, Jiang L H, Rao Y C. Advances in studies on causes and molecular mechanisms of premature senescence in rice leaves. Chinese Bulletin of Botany, 2017. 52(1): 102-112.
    [7] 李中朋, 蒯本科. 绿色器官衰老进程中营养物质的动员与再利用研究进展. 植物生理学报, 2014. 50(09): 1322-1328.Li Z P, Kuai B K. Research progress on mobilization and reuse of nutrients in green organ aging process. Journal of Plant Physiology, 2014. 50(09): 1322-1328.
    [8] Janack B, Sosoi P, Krupinska K, Humbeck K. Knockdown of WHIRLY1 Affects Drought Stress-Induced Leaf Senescence and Histone Modifications of the Senescence-Associated Gene HvS40. Plants (Basel), 2016. 5(3): 37.
    [9] Zhao L, Xia Y, Wu X Y, Schippers J H M, Jing H C. Phenotypic Analysis and Molecular Markers of Leaf Senescence. Methods in Molecular Biology, 2018. 1744: 35-48.
    [10] 王鹏杰, 吴殿星, 舒小丽. 水稻衰老相关突变体的研究进展. 核农学报, 2018. 32(3): 0497- 0505.Wang P J, Wu D X, Shu X L. Advances in studies on senescence related mutants in rice. Journal of Nuclear Agricultural Sciences, 2018. 32(3): 0497-0505.
    [11] Li Z, Zhang Y, Liu L, Liu Q, Bi Z, Yu N, Cheng S, Cao L. Fine mapping of the lesion mimic and early senescence 1 (lmes1) in rice (Oryza sativa). Plant Physiology and Biochemistry, 2014. 80: 300-307.
    [12] Xing Y, Du D, Xiao Y, Zhang T, Chen X, Feng P, Sang X, Wang N, He G. Fine Mapping of a New Lesion Mimic and Early Senescence 2 (lmes2) Mutant in Rice. Crop Science, 2016. 56(4): 1550-1560.
    [13] Zheng X, Jehanzeb M, Habiba, Zhang Y, Li L, Miao Y. Characterization of S40-like proteins and their roles in response to environmental cues and leaf senescence in rice. BMC Plant Biology, 2019. 19(1): 174.
    [14] Jiao B B, Wang J J, Zhu X D, Zeng L J, Li Q, He Z H. A novel protein RLS1 with NB-ARM domains is involved in chloroplast degradation during leaf senescence in rice. Molecular Plant, 2012. 5(1): 205-217.
    [15] Yan W, Ye S, Jin Q, Zeng L, Peng Y, Yan D, Yang W, Yang D, He Z, Dong Y, Zhang X. Characterization and mapping of a novel mutant sms1 (senescence and male sterility 1) in rice. Journal of Genetics and Genomics, 2010. 37(1): 47-55.
    [16] Wang S H, Lim J H, Kim S S, Cho S H, Yoo S C, Koh H J, Sakuraba Y, Paek N C. Mutation of SPOTTED LEAF3 (SPL3) impairs abscisic acid-responsive signalling and delays leaf senescence in rice. Journal of Experimental Botany, 2015. 66(22): 7045-7059.
    [17] Wang Z, Wang Y, Hong X, Hu D, Liu C, Yang J, Li Y, Huang Y, Feng Y, Gong H, Li Y, Fang G, Tang H, Li Y. Functional inactivation of UDP-N-acetylglucosamine pyrophosphorylase 1 (UAP1) induces early leaf senescence and defence responses in rice. Journal of Experimental Botany, 2015. 66(3): 973-987.
    [18] Yang X, Gong P, Li K, Huang F, Cheng F, Pan G. A single cytosine deletion in the OsPLS1 gene encoding vacuolar-type H+-ATPase subunit A1 leads to premature leaf senescence and seed dormancy in rice. Journal of Experimental Botany, 2016. 67(9): 2761-2776.
    [19] 张强. 小麦叶片衰老基因 TaLS-2D 的图位克隆. Chinese Academy of Agricultural Sciences, 2018.Zhang Q. Map-based cloning of the leaf senescence gene UrI-2D in wheat. Chinese Academy of Agricultural Sciences, 2018.
    [20] Zeng D D, Yang C C, Qin R, Alamin M, Yue E K, Jin X L, Shi C H. A guanine insert in OsBBS1 leads to early leaf senescence and salt stress sensitivity in rice (Oryza sativa L.). Plant Cell Reports, 2018. 37(6): 933-946.
    [21] Rauf M, Arif M, Dortay H, Matallana-Ramirez L P, Waters M T, Gil Nam H, Lim P O, Mueller-Roeber B, Balazadeh S. ORE1 balances leaf senescence against maintenance by antagonizing G2-like-mediated transcription. Scientific RepoRts, 2013. 14(4): 382-388.
    [22] Huang Q N, Shi Y F, Zhang X B, Song L X, Feng B H, Wang H M, Xu X, Li X H, Guo D, Wu J L. Single base substitution in OsCDC48 is responsible for premature senescence and death phenotype in rice. Journal of Integrative Agriculture, 2016. 58(1): 12-28.
    [23] Zhao C, Liu C, Zhang Y, Cui Y, Hu H, Jahan N, Lv Y, Qian Q, Guo L. A 3-bp deletion of WLS5 gene leads to weak growth and early leaf senescence in rice. Rice, 2019. 12(1): 26.
    [24] Yang Y, Xu J, Huang L, Leng Y, Dai L, Rao Y, Chen L, Wang Y, Tu Z, Hu J, Ren D, Zhang G, Zhu L, Guo L, Qian Q, Zeng D. PGL, encoding chlorophyllide a oxygenase 1, impacts leaf senescence and indirectly affects grain yield and quality in rice. Journal of Experimental Botany, 2016. 67(5): 1297-1310.
    [25] Guiboileau A, Sormani R, Meyer C, Masclaux-Daubresse C. Senescence and death of plant organs: nutrient recycling and developmental regulation. Comptes Rendus Biologies, 2010. 333(4): 382-391.
    [26] 杨波, 夏敏, 张孝波, 王晓雯, 朱小燕, 何沛龙, 何光华, 桑贤春. 水稻早衰突变体esl6的鉴定与基因定位. 作物学报, 2016. 42(7): 976-983.Yang B, Xia M, Zhang X B, Wang X W, Zhu X Y, He P l, He G H, Sang X C. Identification and gene mapping of rice premature senescence mutant ESL6. Acta Agronomica Sinica, 2016. 42(7): 976-983.
    [27]Avila-Ospina L, Moison M, Yoshimoto K, Masclaux-Daubresse C. Autophagy, plant senescence, and nutrient recycling. Journal of Experimental Botany, 2014. 65(14): 3799-3811.
    [28] Biswal B, Pandey J K. Loss of photosynthesis signals a metabolic reprogramming to sustain sugar homeostasis during senescence of green leaves: Role of cell wall hydrolases. Photosynthetica, 2018. 56(1): 404-410.
    [29] Sarwat M, Leaf Senescence in Plants: Nutrient Remobilization and Gene Regulation, in Stress Signaling in Plants: Genomics and Proteomics Perspective. 2017. 301-316.
    [30] Lim P O, J. K H. Leaf Senescence. Annual Review of Plant Biology, 2007. 58(1): 115-136.
    [31] Ma X, Zhang Y, Tureckova V, Xue G P, Fernie A R, Mueller-Roeber B, Balazadeh S. The NAC Transcription Factor SlNAP2 Regulates Leaf Senescence and Fruit Yield in Tomato. Plant Physiology, 2018. 177(3): 1286-1302.
    [32] Calderini O, Bovone T, Scotti C, Pupilli F, Piano E, Arcioni S. Delay of leaf senescence in Medicago sativa transformed with the ipt gene controlled by the senescence-specific promoter SAG12. Plant Cell Reports, 2007. 26(5): 611-615.
    [33] Kato Y, Murakami S, Yamamoto Y, Chatani H, Kondo Y, Nakano T, Yokota A, Sato F. The DNA-binding protease, CND41, and the degradation of ribulose-1,5-bisphosphate carboxylase/oxygenase in senescent leaves of tobacco. Planta, 2004. 220(1): 97-104.
    [34] Masclaux-Daubresse C, Daniel-Vedele F, Dechorgnat J, Chardon F, Gaufichon L, Suzuki A. Nitrogen uptake, assimilation and remobilization in plants: challenges for sustainable and productive agriculture. Annals of Botany, 2010. 105(7): 1141-1157.
    [35] Green P. The ribonucleases of higher plants. Annual.Reviews.Plant Physiology, 1994. 45: 421-445.
    [36] Bariola P A, Howard C J, Taylor C B, Verburg M T, Jaglan V D, Green P J. The arabidopsis ribonuclease gene rns1 is tightly controlled in response to phosphate limitation. The Plant Journal, 2010. 6(5): 673-685.
    [37] Troncoso-Ponce M A, Cao X, Yang Z, Ohlrogge J B. Lipid turnover during senescence. Plant Science, 2013. 205-206: 13-19.
    [38] He Y, Gan S. A gene encoding an acyl hydrolase is involved in leaf senescence in Arabidopsis. Plant Cell, 2002. 14(4): 805-815.
    [39] Mao C, Lu S, Lv B, Zhang B, Shen J, He J, Luo L, Xi D, Chen X, Ming F. A Rice NAC Transcription Factor Promotes Leaf Senescence via ABA Biosynthesis. Plant Physiology, 2017. 174(3): 1747-1763.
    [40] 李格, 孟小庆, 蔡敬, 董婷婷, 李宗芸, 朱明库. 活性氧在植物非生物胁迫响应中功能的研究进展. 植物生理学报, 2018. 54(06): 951-959.Li G, Meng X Q, Cai J, Dong T T, Li Z Y, Zhu M K .Research progress on the function of reactive oxygen species in plant abiotic stress response. Chinese Journal of Plant Physiology, 2018. 54(06): 951-959.
    [41] Moller I M. Plant mitochondria and oxidative stress: Electron transport, NADPH turnover, and metabolism of reactive oxygen species. Annual Review of Plant Physiology Plant Molecular Biology, 2001. 52: 561-591.
    [42] Choudhary A, Kumar A, Kaur N. ROS and oxidative burst: Roots in plant development. Plant Divers, 2020. 42(1): 33-43.
    [43] 张梦如, 杨玉梅, 成蕴秀, 周滔, 段晓艳, 龚明, 邹竹荣. 植物活性氧的产生及其作用和危害. 西北植物学报, 2014. 34(09): 1916-1926.Zhang M R, Yang Y M, Cheng Y X, Zhou T, Duan X Y, Gong M, Zou Z R. Production of reactive oxygen species in plants and its effects and harms. Acta Botanica Boreali-Occidentalia Sinica, 2014. 34(09): 1916-1926.
    [44] Wang M, Zhang T, Peng H, Luo S, Tan J, Jiang K, Heng Y, Zhang X, Guo X, Zheng J, Cheng Z. Rice Premature Leaf Senescence 2, Encoding a Glycosyltransferase (GT), Is Involved in Leaf Senescence. Frontiers in Plant Science, 2018. 9: 560.
    [45] 王珏, 封超年, 郭文善, 朱新开, 李春燕, 彭永欣. 花后高温胁迫对小麦籽粒淀粉积累及晶体特性的影响. 麦类作物学报, 2008. 28(2): 260-265.Wang J, Feng C N, Guo W S, Zhu X K, Li C Y, Peng Y X. Effects of post-anthesis high temperature stress on starch accumulation and crystal properties of wheat grains. Journal of Triticeae Crops, 2008. 28(2): 260-265.
    [46] Djanaguiraman M, Prasad P. Ethylene production under high temperature stress causes premature leaf senescence in soybean. Functional Plant Biology, 2010. 37(11): 1071-1084.
    [47] Brevedan R E, Egli D B. Short Periods of Water Stress during Seed Filling, Leaf Senescence, and Yield of Soybean. Crop Science, 2003. 43(6): 2083-2088.
    [48] Lin Y, Tan L, Zhao L, Sun X, Sun C. RLS3, a protein with AAA+ domain localized in chloroplast, sustains leaf longevity in rice. Journal of Integrative Agriculture, 2016. 58(12): 971-982.
    [49] Li C, Liu C Q, Zhang H S, Chen C P, Yang X R, Chen L F, Liu Q S, Guo J, Sun C H, Wang P R, Deng X J. LPS1, Encoding Iron-Sulfur Subunit SDH2-1 of Succinate Dehydrogenase, Affects Leaf Senescence and Grain Yield in Rice. International Journal of Molecular Sciences, 2020. 22(1).
    [50] Hong Y, Zhang Y, Sinumporn S, Yu N, Zhan X, Shen X, Chen D, Yu P, Wu W, Liu Q, Cao Z, Zhao C, Cheng S, Cao L. Premature leaf senescence 3, encoding a methyltransferase, is required for melatonin biosynthesis in rice. The Plant Journal, 2018.
    [51] van der Graaff E, Schwacke R, Schneider A, Desimone M, Flugge U I, Kunze R. Transcription analysis of arabidopsis membrane transporters and hormone pathways during developmental and induced leaf senescence. Plant Physiology, 2006. 141(2): 776-792.
    [52] Li Z, Zhang Y, Zou D, Zhao Y, Wang H L, Zhang Y, Xia X, Luo J, Guo H, Zhang Z. LSD 3.0: a comprehensive resource for the leaf senescence research community. Nucleic Acids Research, 2020. 48(D1): D1069-D1075.
    [53] Guo Y, Cai Z, Gan S. Transcriptome of Arabidopsis leaf senescence. Plant Cell Environment, 2010. 27(5): 521-549.
    [54] Kim H J, Nam H G, Lim P O. Regulatory network of NAC transcription factors in leaf senescence. Current Opinion in Plant Biology, 2016. 33: 48-56.
    [55] Guo Y, Gan S. AtNAP, a NAC family transcription factor, has an important role in leaf senescence. The Plant Journal, 2006. 46(4): 601-612.
    [56] Balazadeh S, Kwasniewski M, Caldana C, Mehrnia M, Zanor M I, Xue G P, Mueller-Roeber B. ORS1, an H(2)O(2)-responsive NAC transcription factor, controls senescence in Arabidopsis thaliana. Molecular Plant, 2011. 4(2): 346-360.
    [57] Oda-Yamamizo C, Mitsuda N, Sakamoto S, Ogawa D, Ohme-Takagi M, Ohmiya A. The NAC transcription factor ANAC046 is a positive regulator of chlorophyll degradation and senescence in Arabidopsis leaves. Scientific RepoRts, 2016. 6: 23609.
    [58] Yang S D, Seo P J, Yoon H K, Park C M. The arabidopsis nac transcription factor vni2 integrates abscisic acid signals into leaf senescence via the cor/rd genes. Plant Signaling Behavior, 2011. 23(6): 2155-2168.
    [59] Hickman R, Hill C, Penfold C A, Breeze E, Bowden L, Moore J D, Zhang P, Jackson A, Cooke E, Bewicke-Copley F, Mead A, Beynon J, Wild D L, Denby K J, Ott S, Buchanan-Wollaston V. A local regulatory network around three NAC transcription factors in stress responses and senescence in Arabidopsis leaves. The Plant Journal, 2013. 75(1): 26-39.
    [60] Wu A, Allu A D, Garapati P, Siddiqui H, Dortay H, Zanor M I, Asensi-Fabado M A, Munne-Bosch S, Antonio C, Tohge T, Fernie A R, Kaufmann K, Xue G P, Mueller-Roeber B, Balazadeh S. JUNGBRUNNEN1, a reactive oxygen species-responsive NAC transcription factor, regulates longevity in Arabidopsis. Plant Cell, 2012. 24(2): 482-506.
    [61] Zhou Y, Huang W, Liu L, Chen T, Zhou F, Lin Y. Identification and functional characterization of a rice NAC gene involved in the regulation of leaf senescence. BMC Plant Biology, 2013. 13(1): 1-13.
    [62] Chen X y, Song G q, Zhang S j, Li Y l, Gao J, Shahidul I, Ma W j, Li G y, Ji W q. The allelic distribution and variation analysis of the NAM-B1 gene in Chinese wheat cultivars. Journal of Integrative Agriculture, 2017. 16(6): 1294-1303.
    [63] Zhao D, Derkx A P, Liu D C, Buchner P, Hawkesford M J. Overexpression of a NAC transcription factor delays leaf senescence and increases grain nitrogen concentration in wheat. Plant Biology, 2015. 17(4): 904-913.
    [64] Christiansen M W, Matthewman C, Podzimska-Sroka D, O'Shea C, Lindemose S, Mollegaard N E, Holme I B, Hebelstrup K, Skriver K, Gregersen P L. Barley plants over-expressing the NAC transcription factor gene HvNAC005 show stunting and delay in development combined with early senescence. Journal of Experimental Botany, 2016. 67(17): 5259-5273.
    [65] Kim J H, Woo H R, Kim J, Lim P O, Lee I C, Choi S H, Hwang D, Nam H G. Trifurcate feed-forward regulation of age-dependent cell death involving miR164 in Arabidopsis. Science, 2009. 323(5917): 1053-1057.
    [66] Yu Y, Qi Y, Xu J, Dai X, Chen J, Dong C H, Xiang F. Arabidopsis WRKY71 regulates ethylene-mediated leaf senescence by directly activating EIN2, ORE1 and ACS2 genes. Plant J, 2021.
    [67] Borrill P, Harrington S A, Simmonds J, Uauy C. Identification of Transcription Factors Regulating Senescence in Wheat through Gene Regulatory Network Modelling. Plant Physiology, 2019. 180(3): 1740-1755.
    [68] Uauy C, Brevis J C, Dubcovsky J. The high grain protein content gene Gpc-B1 accelerates senescence and has pleiotropic effects on protein content in wheat. Journal of Experimental Botany, 2006. 57(11): 2785-2794.
    [69] Saini S, Sharma I, Pati P K. Versatile roles of brassinosteroid in plants in the context of its homoeostasis, signaling and crosstalks. Front Plant Science, 2015. 6: 950.
    [70] Sultana N, Islam S, Juhasz A, Ma W. Wheat leaf senescence and its regulatory gene network. The Crop Journal, 2021.
    [71] Christiansen M W, Gregersen P L. Members of the barley NAC transcription factor gene family show differential co-regulation with senescence-associated genes during senescence of flag leaves. Journal of Experimental Botany, 2014. 65(14): 4009-4022.
    [72] Ren T, Wang J, Zhao M, Gong X, Wang S, Wang G, Zhou C. Involvement of NAC transcription factor SiNAC1 in a positive feedback loop via ABA biosynthesis and leaf senescence in foxtail millet. Planta, 2018. 247(1): 53-68.
    [73] Liang C, Chu C. Towards understanding abscisic acid-mediated leaf senescence. Science China Life Sciences, 2015. 58(5): 506-508.
    [74] Liang C, Wang Y, Zhu Y, Tang J, Hu B, Liu L, Ou S, Wu H, Sun X, Chu J, Chu C. OsNAP connects abscisic acid and leaf senescence by fine-tuning abscisic acid biosynthesis and directly targeting senescence-associated genes in rice. Proceedings of the National Academy of Sciences of the United States of America, 2014. 111(27): 10013-10018.
    [75] Zhao Y, Chan Z, Gao J, Xing L, Cao M, Yu C, Hu Y, You J, Shi H, Zhu Y, Gong Y, Mu Z, Wang H, Deng X, Wang P, Bressan R A, Zhu J K. ABA receptor PYL9 promotes drought resistance and leaf senescence. PNAS, 2016. 113(7): 1949-1954.
    [76] 周洁, 温泽文, 梅圆圆, 王宁宁. SAUR72在拟南芥叶片衰老调控中的作用机制. 植物生理学报, 2018. 54(3): 379-385.Zhou J, Wen Z W, Mei Y Y, Wang N N. Mechanism of SAUR72 in leaf senescence regulation of Arabidopsis thaliana. Journal of Plant Physiology, 2018. 54(3): 379-385.
    [77] Hou K, Wu W, Gan S S. SAUR36, a small auxin up RNA gene, is involved in the promotion of leaf senescence in Arabidopsis. Plant Physiology, 2013. 161(2): 1002-1009.
    [78] Bemer M, Mourik H V, Muio J M, Cristina Ferrándiz, Angenent G C. Fruitfull controls saur10 expression and regulates arabidopsis growth and architecture. Journal of Experimental Botany, 2017. 68(13): 3391-3403.
    [79] Kant S, Bi Y M, Rothstein Z S J. Saur39, a small auxin-up rna gene, acts as a negative regulator of auxin synthesis and transport in rice. Plant Signaling Behavior, 2009. 151(2): 691-701.
    [80] Zhang W, Peng K, Cui F, Wang D, Zhao J, Zhang Y, Yu N, Wang Y, Zeng D, Wang Y, Cheng Z, Zhang K. Cytokinin oxidase/dehydrogenase OsCKX11 coordinates source and sink relationship in rice by simultaneous regulation of leaf senescence and grain number. Plant Biotechnology Journal, 2020: 1–16.
    [81] Chen Y, Xu Y, Luo W, Li W, Chen N, Zhang D, Chong K. The F-box protein OsFBK12 targets OsSAMS1 for degradation and affects pleiotropic phenotypes, including leaf senescence, in rice. Plant Physiology, 2013. 163(4): 1673-1685.
    [82] Jibran R, D A H, P P D. Hormonal regulation of leaf senescence through integration of developmental and stress signals. Plant Molecular Biology, 2013. 82(6): 547-561.
    [83] Cao W H, Liu J, He X J, Mu R L, Zhou H L, Chen S Y, Zhang J S. Modulation of ethylene responses affects plant salt-stress responses. Plant Physiology, 2007. 143(2): 707-719.
    [84] Chen L J, Wuriyanghan H, Zhang Y Q, Duan K X, Chen H W, Li Q T, Lu X, He S J, Ma B, Zhang W K, Lin Q, Chen S Y, Zhang J S. An S-domain receptor-like kinase, OsSIK2, confers abiotic stress tolerance and delays dark-induced leaf senescence in rice. Plant Physiology, 2013. 163(4): 1752-1765.
    [85] Lee R H, Wang C H, Huang L T. Leaf senescence in rice plants: cloning and characterization of senescence up regulated genes. Journal of Experimental Botany, 2001. 52(358): 1117– 1121.
    [86] 赵春德, 张迎信, 刘群恩, 余宁, 朱爱科, 程式华, 曹立勇. 水稻叶片衰老分子机制研究进展. 分子植物育种, 2015. 13(03): 680-688.Zhao C D, Zhang Y X, Liu Q E, Yu N, Zhu A K, Cheng S H, Cao L Y. Advances in molecular mechanism of rice leaf senescence. Molecular Plant Breeding, 2015. 13(03): 680-688.
    [87] Zhang Z, Liu C, Li K, Li X, Xu M, Guo Y. CLE14 functions as a “brake signal” suppressing age-dependent and stress-induced leaf senescence through promoting JUB1-mediated ROS scavenge in Arabidopsis. Molecular Plant, 2021.
    [88] James M, Poret M, Masclaux-Daubresse C, Marmagne A, Coquet L, Jouenne T, Chan P, Trouverie J, Etienne P. SAG12, a Major Cysteine Protease Involved in Nitrogen Allocation during Senescence for Seed Production in Arabidopsis thaliana. Plant Cell Physiol, 2018. 59(10): 2052-2063.
    [89] Singh S, Giri M K, Singh P K, Siddiqui A, Nandi A K. Down-regulation of OsSAG12-1 results in enhanced senescence and pathogen-induced cell death in transgenic rice plants. Journal of Biosciences, 2013. 38(3): 583-592.
    [90] Kang K, Kim Y S, Park S, Back K. Senescence-induced serotonin biosynthesis and its role in delaying senescence in rice leaves. Plant Physiology, 2009. 150(3): 1380-1393.
    [91] Helenius A, Aebi M. Roles of N-linked glycans in the endoplasmic reticulum. Annual. Reviews. Biochemistry, 2004. 73: 1019–1049.
    [92] Fanata W I, Lee K H, Son B H, Yoo J Y, Harmoko R, Ko K S, Ramasamy N K, Kim K H, Oh D B, Jung H S, Kim J Y, Lee S Y, Lee K O. N-glycan maturation is crucial for cytokinin-mediated development and cellulose synthesis in Oryza sativa. The Plant Journal, 2013. 73(6): 966-979.
    [93] Zhou Y, Liu L, Huang W, Yuan M, Zhou F, Li X, Lin Y. Overexpression of OsSWEET5 in rice causes growth retardation and precocious senescence. PLoS One, 2014. 9(4): e94210.
    [94] Yoshida S, Ito M, Callis J, Nishida I, Watanabe A. A delayed leaf senescence mutant is defective inarginyl-tRNA:protein arginyltransferase, a componentof the N-end rule pathway in Arabidopsis. The Plant Journal, 2010. 32(1): 129-137.
    [95] M H Glickman, Ciechanover A. The ubiquitin-p roteasome proteolys is pathway: destruction for the sake of construction. Physiological Reviews, 2002. 82: 373- 428.
    [96] Oh S. A. , Park J H, Lee G I, Paek K H, Park S K, Nam H G. Identification of three genetic loci controlling leaf senescence in Arabidopsis thaliana. The Plant Journal, 1997. 12(3): 527–535.
    [97] Ma J, Wang Y, Ma X, Meng L, Jing R, Wang F, Wang S, Cheng Z, Zhang X, Jiang L, Wang J, Wang J, Zhao Z, Guo X, Lin Q, Wu F, Zhu S, Wu C, Ren Y, Lei C, Zhai H, Wan J. Disruption of gene SPL35, encoding a novel CUE domain-containing protein, leads to cell death and enhanced disease response in rice. Plant Biotechnology Journal, 2019. 17(8): 1679-1693.
    [98] 孙玉莹, 毕京翠, 赵志超, 程治军, 万建民. 作物叶片衰老研究进展. 作物杂志, 2013. 04: 21-29.Sun Y Y, Bi J C, Zhao Z C, Cheng Z J, Wan J M. Advances in studies on crop leaf senescence. Crops, 2013. 04: 21-29.
    [99] Higuchi K, Iwase J, Tsukiori Y, Nakura D, Kobayashi N, Ohashi H, Saito A, Miwa E. Early senescence of the oldest leaves of Fe-deficient barley plants may contribute to phytosiderophore release from the roots. Physiologia Plantarum, 2014. 151(3): 313-322.
    [100] Hu B, Zhu C, Li F, Tang J, Wang Y, Lin A, Liu L, Che R, Chu C. LEAF TIP NECROSIS1 plays a pivotal role in the regulation of multiple phosphate starvation responses in rice. Plant Physiology, 2011. 156(3): 1101-1115.
    Related
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation
Share
Article Metrics
  • Abstract:917
  • PDF: 1930
  • HTML: 0
  • Cited by: 0
History
  • Received:September 30,2021
  • Revised:October 25,2021
  • Adopted:November 01,2021
  • Online: March 10,2022
Article QR Code
You are the 556257th visitor 京ICP备09069690号-23
® 2025 All Rights Reserved
Supported by:Beijing E-Tiller Technology Development Co., Ltd.
Firefox, Chrome, IE10, IE11 are recommended. Other browsers are not recommended.