2025-6-12- 11
  • Home
  • About Journal
  • Editorial Board
  • Author
    Instruction
    Copyright Agreement
  • Ethcis Statement
  • Subscribe
  • Contact
  • 中文
Home > Archive>Volume 23, Issue 2, 2022 >323-332. DOI:10.13430/j.cnki.jpgr.20211011001 Online First
PDF HTML XML Export Cite reminder
Research Progress on the Function of WRKY Transcription Factor Response to Biotic and Abiotic Stresses in Soybean
DOI:
10.13430/j.cnki.jpgr.20211011001
CSTR:
Author:
  • CHEN Lin-ying 1

    CHEN Lin-ying

    College of Agriculture, Anhui Agricultural University
    Find this author on All Journals
    Find this author on BaiDu
    Search for this author on this site
  • LI Jia-jia 1

    LI Jia-jia

    College of Agriculture, Anhui Agricultural University
    Find this author on All Journals
    Find this author on BaiDu
    Search for this author on this site
  • WANG Bo 1

    WANG Bo

    College of Agriculture, Anhui Agricultural University
    Find this author on All Journals
    Find this author on BaiDu
    Search for this author on this site
  • DU Wan-qing 1

    DU Wan-qing

    College of Agriculture, Anhui Agricultural University
    Find this author on All Journals
    Find this author on BaiDu
    Search for this author on this site
  • GAO Meng-xue 1

    GAO Meng-xue

    College of Agriculture, Anhui Agricultural University
    Find this author on All Journals
    Find this author on BaiDu
    Search for this author on this site
  • LIU Hui 1

    LIU Hui

    College of Agriculture, Anhui Agricultural University
    Find this author on All Journals
    Find this author on BaiDu
    Search for this author on this site
  • TAN Shu-qin 1

    TAN Shu-qin

    College of Agriculture, Anhui Agricultural University
    Find this author on All Journals
    Find this author on BaiDu
    Search for this author on this site
  • QIU Li-juan 2

    QIU Li-juan

    Institute of Crop Science,Chinese Academy of Agricultural Sciences/The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI)/ Key Laboratory of Crop Gene Resource and Germplasm Enhancement (MOA)
    Find this author on All Journals
    Find this author on BaiDu
    Search for this author on this site
  • WANG Xiao-bo 1

    WANG Xiao-bo

    College of Agriculture, Anhui Agricultural University
    Find this author on All Journals
    Find this author on BaiDu
    Search for this author on this site
Affiliation:

1.College of Agriculture, Anhui Agricultural University;2.Institute of Crop Science,Chinese Academy of Agricultural Sciences/The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI)/ Key Laboratory of Crop Gene Resource and Germplasm Enhancement (MOA)

Clc Number:

Fund Project:

Natural Science Foundation of Anhui Province(1908085QC105),The Innovation and Entrepreneurship Program for College Students of Anhui Province (S202010364130,S202010364128),Anhui University Natural Science Foundation-funded Project (KJ2021A0200),Supported by the Special Fund for Anhui Agriculture Research System

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference [96]
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Soybean (Glycine max (L.) Merr.) is an important oil crop and is often challenged by multiple stresses,thus resulting in loss of yield production and decrease of grain quality in lifecycle. WRKY transcription factors (TFs) are identified to involve into the responses to various stresses,for instance by regulating phytohormone-mediated signal transduction. The WRKY transcription factors belong to one of the TFs families found in plants. The family member generally contains one or two WRKY domain(s) which consists of approximately 60 amino acids. WRKY-TFs have been uncovered participating into the biological processes such as crop senescence, seed development,germination and dormancy,and have been also found to regulate the adaptability of plants response upon biotic and abiotic stresses. However,deciphering WRKY-TFs in soybean remains relatively insufficient. This study mainly elaborates on the research progress of the family structure/organization and their roles responding to biotic and abiotic stresses. Moreover,we propose future research focuses and hot spots to provide insights for unlocking the biological function of the WRKY family members in soybean.

    Key words:soybean;WRKY transcription factor;biotic stress;abiotic stress
    Reference
    [1] Salem M A, Kakani V G, Koti S, Reddy K R. Pollen-based screening of soybean genotypes for high temperatures. Crop Science, 2007, 47(1): 219-231
    [2] Krasensky J, Jonak C. Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks. Journal of Experimental Botany, 2012, 63(4): 1593-1608
    [3] 张仟雨, 李萍, 宗毓铮, 董琦, 尹美强, 胡晓雪, 郝兴宇. 干旱对大豆生理及产量影响的研究. 华北农学报, 2016, 31(05): 140-145Zhang Q Y , Li P , Zong Y Z ,Dong Q , Yin M Q , Hu X Y , Hao X Y. Research on the effect of drought on soybean physiology and yield, Acta Agriculturae Boreali-Sinica, 2016, 31(05): 140-145
    [4] 孙恒伟, 宁海龙, 李海旭, 桓海生, 李文滨. 干旱胁迫对大豆产量的影响. 大豆科技, 2010, (5): 7-10Sun H W , Ning H L , Li H X , Huan H S , Li W B. Effects of drought stress on soybean yield. Soybean Technology, 2010, (5): 7-10
    [5] 廖婕, 任慧敏, 柳参奎, 亓果宁. 分子植物育种. 2021, 19(6): 2041-2047Liao J,Ren H M,Liu C K,Qi G N. Molecular Plant Breeding. 2021, 19(6): 2041-2047
    [6] 王聪, 刘艳华, 董永义, 杨恒山, 马玉露, 贾俊英, 包金花, 郑毅. NaCl胁迫对菜用大豆光合作用及叶绿体抗氧化系统的影响. 西南农业学报, 2016, 29(12): 2824-2829Wang C , Liu Y H , Dong Y Y , Yang H S , Ma Y L , Jia J Y , Bao J H , Zheng Y. Effects of naCl stress on photosynthesis and chloroplast antioxidant system of vegetable soybean. Journal of Southwest Agriculture, 2016, 29(12): 2824-2829
    [7] 刘玉兰, 陈殿元, 元明浩, 段开怀, 李皖, 张国印, 孙堂玉. 盐胁迫对小粒大豆幼苗生长发育及光合特性的影响. 大豆科学, 2017, 36(6): 913-920Liu Y L,Chen D Y,Yuan M H,Duan K H,Li Y,Zhang G Y,Sun T Y. Effects of salt stress on growth, development and photosynthetic characteristics of small grain soybean seedlings. Soybean Science, 2017, 36(6): 913-920
    [8] 王萍, 宋海星, 马淑英. 花期低温对大豆荚和籽粒形成的影响. 中国油料作物学报, 2000, 022(002): 31-33Wang P , Song H X , Ma S Y. Effects of Low Temperature at Flowering Stage on POD and raiGn formation of soybean. Chinese Journal Of Oil Crops, 2000, 022(002): 31-33
    [9] 汪明华, 李佳佳, 陆少奇, 邵文韬, 程安东, 张文明, 王晓波, 邱丽娟. 大豆品种耐高温特性的评价方法及耐高温种质筛选与鉴定. 植物遗传资源学报, 2019, 20(4): 891-902Wang M H , Li J J , Lu S Q , Shao W T , Cheng A D , Zhang W M , Wang X B , Qiu L J. Evaluation method of high temperature tolerance of soybean varieties and screening and identification of high temperature resistant germplasm. Journal Of Plant Genetic Resources, 2019, 20(4): 891-902
    [10] Tyler B M. Phytophthora sojae: root rot pathogen of soybean and model oomycete. Molecular Plant Pathology, 2007, 8(1): 1-8
    [11] 关淑艳, 焦鹏, 蒋振忠, 齐拙, 夏海丰, 曲静, 马义勇. MYB转录因子在植物非生物胁迫中的研究进展. 吉林农业大学学报, 2019, 41(03): 253-260Guan S Y , Jiao P , Jiang Z Z , Qing Z , Xiang H F , Qu J , Ma Y Y. Research progress of MYB transcription factors in abiotic stress of Plants. Journal of Jilin Agricultural University, 2019, 41(03): 253-260
    [12] Yu YH, Ni Z Y, Wang Y, Wan H, Hu Z, Jiang Q Y, Sun X J, Zhang H. Overexpression of soybean miR169c confers increased drought stress sensitivity in transgenic arabidopsis thaliana. Plant Science. 2019,285: 68-78
    [13] Ku Y S, Sintaha M, Cheung M Y, Lam H M. Plant hormone signaling crosstalks between biotic and abiotic stress responses. International Journal Of Molecular Sciences,S2018,19(10): 3206
    [14] Huang Y, Xuan H, Yang C,Guo N,Wang H,Zhao J,Xing H. GmHsp90A2 is involved in soybean heat stress as a positive regulator. Plant Science,S2019,285: 26-33
    [15] Bai Y, Sunarti S, Kissoudis C, Visser R G F, Linden C G V D. The role of tomato WRKY genes in plant responses to combined abiotic and biotic stresses. Frontiers in Plant Science, 2018, 9: 801
    [16] Ishiguro S, Nakamura K. Characterization of a CDNA encoding a novel DNA-binding protein, SPF1, that recognizes SP8 sequences in the 5′ upstream regions of genes coding for sporamin and β-amylase from sweet potato. Molecular Genetics and Genomics, 1994, 244(6): 563-571
    [17] Schmutz J, Cannon S B, Schlueter J, Ma J, Mitros T, Nelson W, Hyten D L, Song Q, Thelen J J, Cheng J, Xu D, Hellsten U, May G D, Yu Y, Sakurai T, Umezawa T, Bhattacharyya M K, Sandhu D, Valliyodan B, Lindquist E, Peto M, Grant D, Shu S, Goodstein D, Barry K, Futrell-Griggs M, Abernathy B, Du J, Tian Z, Zhu L, Gill N, Joshi T, Libault M, Sethuraman A, Zhang X C, Shinozaki K, Nguyen H T, Wing R A, Cregan P, Specht J, Grimwood J, Rokhsar D, Stacey G, Shoemaker R C, Jackson S A. Genome sequence of the palaeopolyploid soybean. Nature, 2010, 463(7278): 178-183
    [18] Eulgem T, Rushton P J, Robatzek S, Somssich I E. The WRKY superfamily of plant transcription factors. Trends in Plant Science, 2000, 5(5): 199-206
    [19] Xie Z, Zhang Z L, Zou X, Huang J, Ruas P, Thompson D, Shen Q J. Annotations and functional analyses of the rice WRKY gene superfamily reveal positive and negative regulators of abscisic acid signaling in aleurone cells. Plant Physiology,S2005, 137(1): 176-189
    [20] Zhang Y J, Wang L J. WRKY transcription factor superfamily: its origin in eukaryotes and expansion in plants. BMC Evolutionary Biology, 2005, 5(1): 1-12
    [21] Wu K L, Guo Z J, Wang H H, Li J.SThe WRKY family of transcription factors in rice and arabidopsis and their origins. DNA Research,S2005, 12(1): 9-26
    [22] ülker B, Somssich I E. WRKY transcription factors: from DNA binding towards biological function. Current Opinion in Plant Biology, 2004, 7(5): 491-498
    [23] Yamasaki K, Kigawa T, Inoue M, Tateno M, Yamasaki T, Yabuki T, Aoki M, Seki E, Matsuda T, Tomo Y. Solution structure of an arabidopsis WRKY DNA binding domain. The Plant Cell, 2005, 17(3): 944-956
    [24] Zhou Q Y, Tian A G, Zou H F, Xie Z M, Lei G, Huang J, Wang C M, Wang H W, Zhang J S, Chen S Y. Soybean WRKY‐type transcription factor genes, GmWRKY13, GmWRKY21, and GmWRKY54, confer differential tolerance to abiotic stresses in transgenic arabidopsis plants. Plant Biotechnology Journal, 2008, 6(5): 486-503
    [25] Rushton P J, Somssich I E, Ringler P, Shen Q J. WRKY transcription factors.Trends in Plant Science, 2010, 15(5): 247-258
    [26] Sun C X, Palmqvist S, Olsson H, Boren M, Ahlandsberg S, Jansson C. .A novel WRKY transcription factor, SUSIBA2, participates in sugar signaling in barley by binding to the sugar-responsive elements of the iso1 promoter. The Plant Cell, 2003, 15(9): 2076-2092
    [27] Yu Y C , Wang N, Hu R, Xiang F N. Genome-wide identification of soybean WRKY transcription factors in response to salt stress. Springerplus, 2016, 5(1): 1-15
    [28] 江英泽, 董宇辰, 王文佳, 马泽众, 刘丽君, 董守坤. 鼓粒期干旱对春大豆品质和产量的影响. 中国农学通报, 2019, 35(22): 14-18Jiang Y Z, Dong Y C, Wang W J, Ma Z Z, Liu L J, Dong S K. The effect of drought on the quality and yield of spring soybean. Chinese Agricultural Science Bulletin,2019, 35(22): 14-18
    [29] 卢琼琼, 宋新山, 严登华. 干旱胁迫对大豆苗期光合生理特性的影响. 中国农学通报, 2012, 28(9): 42-47Lu Q Q , Song X S , Yan D H. Effects of drought stress on photosynthetic and physiological characteristics of soybean seedlings. Chinese Agricultural Science Bulletin, 2012, 28(9): 42-47
    [30] 李大红, 王春弘, 刘喜平, 邬海燕, 李鸿雁. 大豆GmWRKY35基因的克隆及其增强烟草耐旱能力研究.大豆科学, 2017, 36(5): 685-691Li D H , Wang C H , Liu X P , Wu H Y, Li H Y. Cloning of soybean GmWRKY35 gene and its enhancement of drought tolerance in tobacco. Soybean Science, 2017, 36(5): 685-691
    [31] 张兰, 王晓萍, 毕影东, 张春义, 范云六, 王磊. 大豆转录因子GmWRKY57B的基因克隆及功能分析.科学通报, 2008, 53(21): 2604-2611Zhang L , Wang X P , Bi Y D , Zhang C Y , Fan Y L , Wang L. Gene cloning and functional analysis of soybean transcription factor GmWRKY57B. Chinese Science Bulletin, 2008, 53(21): 2604-2611
    [32] 王岩岩, 张永兴, 郭葳, 代文君, 周新安, 矫永庆, 沈欣杰. 野生大豆转录因子GsWRKY57基因的克隆与抗旱性功能分析.国油料作物学报, 2019, 41(4): 524-530Wang Y Y , Zhang Y X , Guo W , Dai W J , Zhou X A , Jiao Y Q , Shen X J. Cloning and drought resistance function analysis of wild soybean transcription factor GsWRKY57 gene. Chinese Journal Of Oil Crop Science, 2019, 41(4): 524-530
    [33] Luo X, Bai X, Sun X L, Zhu D, Liu B, Ji W, Cai H, Cao L, Wu J, Hu M R, Liu X, Tang L L, Zhu Y M. Expression of wild soybean WRKY20 in arabidopsis enhances drought tolerance and regulates ABA signalling. Journal of Experimental Botany, 2013, 64(8): 2155-2169
    [34] Wei W, Liang D W, Bian X H, Shen M, Xiao J H, Zhang W K, Ma B, Lin Q, Lv J, Chen X, Chen S Y, Zhang JS GmWRKY54 improves drought tolerance through activating genes in abscisic acid and Ca(2+) signaling pathways in transgenic soybean. The Plant Journal, 2019, 100(2): 384-398
    [35] Rengasamy P. World salinization with emphasis on Australia. Journal of Experimental Botany, 2006, 57(5): 1017-1023
    [36] Munns R, Tester M. Mechanisms of salinity tolerance. Annual Review of Plant Biology, 2008, 59(1): 651-681
    [37] 邵桂花, 万超文, 李舒凡. 大豆萌发期耐盐生理初步研究. 作物杂志, 1994, 10(6): 25-27Shao G H , Wan C W , Li S F. Preliminary study on salt tolerance physiology of soybean during germination. Crops, 1994, 10(6): 25-27
    [38] Abel G H. Inheritance of the capacity for chloride inclusion and chloride exclusion by soybeans. Crop Science, 1969, 9(6): 697-698
    [39] 曹帅, 杜仲阳, 向殿军, 李志刚, 孙贺祥, 宫晓旭, 刘鹏. 18份大豆品种耐盐碱性筛选与综合鉴定.大豆科学, 2019, 38(3): 344-352Cao S , Du Z Y , Xiang D J , Li Z G , Sun H X , Gong X X , Liu P. Screening and comprehensive identification of salt and alkaline tolerance of 18 soybean varieties. Soybean Science, 2019, 38(3): 344-352
    [40] Wang C T, Ru J N, Liu Y W, Li M, Zhao D, Yang J F, Fu J D, Xu Z S. Maize WRKY transcription factor ZmWRKY106 confers drought and heat tolerance in transgenic plants. International Journal of Molecular Sciences, 2018, 19(10): 3046
    [41] Xu Z L, Raza Q, Xu L, He X L, Huang Y H, Yi XJ, Zhang D Y, Shao H B, Ma H X, Ali Z. GmWRKY49, a salt-responsive nuclear protein, improved root length and governed better salinity tolerance in transgenic arabidopsis. Frontiers in Plant Science, 2018, 9: 809
    [42] 徐照龙. 大豆盐胁迫表达谱分析及盐响应转录因子bZIP110、WRKY49和WRKY111的功能研究. 南京农业大学, 2013Xu Z L. Analysis of soybean salt stress expression profile and function study of salt response transcription factors bZIP110, WRKY49 and WRKY111. Nanjing Agricultural University, 2013
    [43] 柯丹霞, 彭昆鹏, 夏远君, 朱玉莹, 张丹丹. 盐胁迫应答基因GmWRKY6的克隆及转基因百脉根的抗盐分析. 草业学报, 2018, 27(8): 95-106Ke D X, Peng K P, Xia Y J, Zhu Y Y, Zhang D D. Cloning of salt stress response gene GmWRKY6 and analysis of salt tolerance of transgenic lotus japonicus. Acta Prata Sinica,2018, 27(8): 95-106
    [44] Schmutz J, Cannon S B, Schlueter J, Ma J, Mitros T, Nelson W, Hyten D L, Song Q, Thelen J J, Cheng J, Xu D, Hellsten U, May G D, Yu Y, Sakurai T, Umezawa T, Bhattacharyya M K, Sandhu D, Valliyodan B, Lindquist E, Peto M, Grant D, Shu S, Goodstein D, Barry K, Futrell-Griggs M, Abernathy B, Du J, Tian Z, Zhu L, Gill N, Joshi T, Libault M, Sethuraman A, Zhang X C, Shinozaki K, Nguyen H T, Wing R A, Cregan P, Specht J, Grimwood J, Rokhsar D, Stacey G, Shoemaker R C, Jackson S A. Genome sequence of the palaeopolyploid soybean. Nature, 2010, 463(7278): 178-183
    [45] Song H, Wang P F, Hou L, Zhao S Z, Zhao C Z, Xia H, Li P C, Zhang Y, Bian X T, Wang X J. Global analysis of WRKY genes and their response to dehydration and salt stress in soybean. Frontiers in Plant Science, 2016 Feb 1; 7: 9
    [46] 柏新盛. 旱盐胁迫下大豆叶片渗透调节的适应性响应. 现代农业科技, 2019Bai X S. Adaptive response of soybeanleaves to osmotic regulation under drought and salt stress. Modern Agricultural Science And Technology, 2019
    [47] Wang F, Chen H W, Li Q T, Wei W, Li W, Zhang W K, Ma B, Bi Y D, Lai Y C, Liu X L, Man W Q, Zhang J S, Chen S Y. GmWRKY27 interacts with GmMYB174 to reduce expression of GmNAC29 for stress tolerance in soybean plants. The Plant Journal, 2015, 83(2): 224-236
    [48] 唐丽娜. GsZFP1和GsWRKY20基因转化苜蓿及耐盐耐旱性分析. 东北农业大学, 2013Tang L N. Transformation of alfalfa with GsZFP1 and GsWRKY20 genes and analysis of salt and drought tolerance. Northeast Agricultural University, 2013
    [49] Shi W Y, Du Y T, Ma J, Min D H, Jin L G, Chen J, Chen M, Zhou Y B, Ma Y Z, Xu Z S, Zhang X H. The WRKY transcription factor GmWRKY12 confers drought and salt tolerance in soybean. International Journal of Molecular Sciences,2018, 19(12): 4087
    [50] Ma Q, Xia Z L, CaiZ D, Li L, Cheng Y B, Liu J, Nian H. GmWRKY16 enhances drought and salt tolerance through an ABA-mediated pathway in arabidopsis thaliana. Frontiers in Plant Science, 2019, 9: 1979
    [51] 张红梅, 刘晓庆, 陈华涛, 袁星星, 崔晓艳, 张智民, 黄中文, 陈新. 大豆转录因子GmWRKY58亚细胞定位及在非生物胁迫下的表达分析. 华北农学报, 2018, 33(2): 49-57Zhang H M , Liu X Q , Chen H T , Yuan X X , Cui X Y , Zhang Z M , Huang Z W , Chen X. Subcellular localization of soybean transcription factor GmWRKY58 and its expression analysis under abiotic stress. Acta Agriculturae Boreali-Sinica, 2018, 33(2): 49-57
    [52] 王婷婷, 丛亚辉, 柳聚阁, 王宁, 帅琴, 李艳, 盖钧镒. 大豆中一个WRKY28-like基因的克隆与功能分析. 作物学报, 2016, 42(4): 469-481Wang T T , Cong Y H , Liu J G , Wang N, Shuai q , Li Y , Gai J Y. Cloning and functional analysis of a WRKY28-like gene in soybean. Journal Of Crops, 2016, 42(4): 469-481
    [53] 王静, 付晶, 李晓伟. 大豆GmWRKY86基因的克隆及表达. 食品与机械, 2020, 036(002): 69-72Wang J , Fu J , Li X W. Cloning and expression of soybean GmWRKY86 Gene. Food and Machinery, 2020, 036(002): 69-72
    [54] 王昭玉, 甄珍, 李雅琳, 王翠霞, 刘思敏, 郭芸彤, 闫瑞娴, 刘建凤. 大豆转录因子GmWRKY4分子克隆与表达分析. 大豆科学S, 2018, 037(004): 539-544Wang Z Y , Zhen Z , Li Y L , Wang C X , Liu S M , Guo Y T , Yan R X , Liu J X. Molecular cloning and expression analysis of soybean transcription factor GmWRKY4. Soybean Science, 2018, 037(004): 539-544
    [55] 盖志佳, 张敬涛, 刘婧琦, 蔡丽君, 杜佳兴, 孟庆英, 谷维, 陈磊. 低温胁迫对大豆幼苗形态生理指标及籽粒产量的影响. 学报, 2019, 9(12): 1-4Gai Z J , Zhang J T , Liu J Q , Cai L J , Du J X , Meng Q Y , Gu W , Chen L. Effects of low temperature stress on morphological and physiological indexes and grain yield of soybean seedlings. Journal, 2019, 9(12): 1-4
    [56] 王新欣, 赵晶晶 冯乃杰, 郑殿峰. 低温胁迫对大豆花期不同冠层叶片生理活性及产量的影响. 大豆科学, 2020, 39(2): 252-259Wang X X , Zhao J J , Feng N J , Zheng D F. Effects of low temperature stress on physiological activity and yield of leaves in different canopy at flowering stage of soybean. Soybean Science, 2020, 39(2): 252-259
    [57] 胡小丽, 董德坤, 杨海英, 杨清华, 朱丹华. 转化GmWRKY21基因提高大豆耐低温性的研究. 浙江农业学报, 2011, 23(4): 661-666Hu X L , Dong D K, Yang H Y , Yang Q H , Zhu D H. Study on improving low temperature tolerance of soybean by transforming GmWRKY21 gene. Acta Agriculturae Zhejiangensis, 2011, 23(4): 661-666
    [58] 刘春花, 谢富, 宋岩, 王健健, 张锐. 植物生长及生理生化特性对低磷胁迫的响应研究进展. 江西农业学报, 2020, 32(02): 71-75Liu C H , Xie F , Song Y , Wang J J , Zhang R. Research progress in the response of plant growth and physiological and biochemical characteristics to low phosphorus stress. Jiangxi Journal of Agriculture, 2020, 32(02): 71-75
    [59] 梁翠月, 廖红. 植物根系响应低磷胁迫的机理研究. 生命科学, 2015, 27(03): 389-397Liang C Y, Liao H. Research on the mechanism of plant roots in response to low phosphorus stress. Life Science, 2015, 27(03)
    [60] Li C, Liu X, Ruan H, Zhang J, Xie F, Gai J, Yang S. GmWRKY45Senhances tolerance to phosphate starvation and salt stress, and changes fertility in transgenicSarabidopsis. Frontier in Plant Science, 2020,10: 1714
    [61] 徐影. 大豆耐低磷相关转录因子GmWRKY75和GmWRKY6的克隆及功能分析. 南京农业大学, 2014Xu Y. Cloning and functional analysis of soybean transcription factors GmWRKY75 and GmWRKY6 related tolow phosphorus tolerance. Nanjing Agricultural University, 2014
    [62] 张璟曜. 大豆磷饥饿诱导相关基因GmSPX和GmWRKY75的功能研究. 南京农业大学, 2016Zhang J Y. Study on the function of soybean phosphorus starvation induction related genes GmSPX and GmWRKY75. Nanjing Agricultural University, 2016
    [63] 彭俊楚. 大豆GmWRKYs基因的克隆和功能研究. 华南农业大学, 2016Peng C J. Cloning and functional study of soybean GmWRKYs gene. South China Agricultural University, 2016
    [64] 任鹏飞, 尚丽霞, 蔡勤安, 于志晶, 马瑞. 植物耐碱性研究进展及其在大豆中的应用展望.大豆科学, 2019, 38(06): 977-985Ren P F,Shang L X,Cai Q A,Yu Z A,Ma R . Research progress of plant alkali tolerance and its application prospect in soybean. Soybean Science, 2019, 38(06): 977-985
    [65] 汪振娟. SmWRKY28蛋白参与蒙古柳抗NaCl、NaHCO_3胁迫的调节功能研究. 东北林业大学, 2016Wang Z J. SmWRKY28 protein participates in the regulation function of mongolian willow against NaCl and NaHCO_3 Stress. Northeast Agricultural University, 2016
    [66] 朱娉慧, 陈冉冉, 于洋, 宋雪薇, 李慧卿, 杜建英, 李强, 丁晓东, 朱延明. 碱胁迫相关基因GsWRKY15 的克隆及其转基因苜蓿的耐碱性分析. 作物学报, 2017, 43(9): 1319-1327Zhu P H , Chen R R , Yu Y , Song Y W , Li H Q , Du J Y , Li Q , Ding X D , Zhu Y M. Cloning of alkaline stress related gene GsWRKY15 and alkali tolerance analysis of transgenic alfalfa. Acta Agronomica Sinica, 2017, 43(9): 1319-1327
    [67] 张兴政, 孙一闻, 吕世翔, 程云清. 大豆霜霉病抗病机制和防治研究. 大豆科学, 2020, 39(01):152-159Zhang X Z , Sun Y W , Lv S X , Cheng Y Q. Study on the mechanism and control of soybean downy mildew. Soybean Science, 2020, 39(01):152-159
    [68] 刘艳, 沙爱华, 陈海峰, 周蓉, 巴红平, 陈水莲, 杨中路, 邱德珍, 吴学军, 单志慧, 周新安. 大豆霜霉病菌rDNA ITS区的分子探针的设计与应用. 华北农学报, 2012, 27(2): 230-233Liu Y, Sha A H, Chen H F, Zhou R, Ba H P, Chen S L, Yang Z L, Qiu D Z, Wu X J, Shan Z H, Zhou X A . Design and application of molecular probe for rDNA its region of soybean downy mildew. Journal Of North China Agriculture, 2012, 27(2): 230-233
    [69] 董航. 大豆霜霉病抗病相关转录因子WRKY的筛选及功能分析. 沈阳农业大学, 2017Dong H. Screening and functional analysis of transcription factor WRKY related to soybean downy mildew resistance. Shenyang Agricultural University, 2017
    [70] Fan S, Dong L, Han D, Zhang F, Wu J, Jiang L, Cheng Q, Li R , Lu W, Meng F, Zhang S, Xu P. GmWRKY31 and GmHDL56 enhances resistance to phytophthora sojae by regulating defense-related gene expression in soybean. Frontier in Plant Science, 2017,8: 781
    [71] Miles M R, Frederick R D, Hartman G L. Evaluation of soybean germplasm for resistance to phakopsora pachyrhizi. Plant Health Progress, 2008, 92(1): 96-105
    [72] 贾冰. 大豆锈病的发生及防治.现代农业, 2018, (05): 26-27Jia B. Occurrence and control of soybean rust. Modern Agriculture, 2018, (05): 26-27
    [73] Bromfield K R, Hartwig E E. Resistance to soybean rust and mode of inheritance. Crop Science, 1980, 20(2): 254-255
    [74] Benckemalato M, Cabreira C, Wiebkestrohm B, Buckerneto L, Mancini E, Osorio M B, Homrich M S,Turchettozolet A C, Carvalho M C De,Stolf R. Genome-wide annotation of the soybean WRKY family and functional characterization of genes involved in response to phakopsora pachyrhizi infection. BMC Plant Biology 2014, 14(1): 1-18
    [75] 昝凯, 徐淑霞, 季珊珊, 陈亚光, 周青, 张志民, 杨慧凤, 王凤菊, 郭海芳, 李明军. 大豆抗疫霉根腐病基因研究进展. 农业科技通讯, 2019, 000(010): 206-211Zan K , Xu S X , Ji S S , Chen Y G , Zhou Q , Zhang Z M , Yang H F , Wang F J , Guo H F , Li M J. Research progress of soybean resistance genes to phytophthora root rot. Bulletin Of Agricultural Science And Technology, 2019, 000(010): 206-211
    [76] 王莎莎, 崔晓霞, 黄颜众, 轩慧冬, 郭娜, 邢邯. 大豆GmWRKY148的克隆与功能分析. 中国农业科学, 2018, 51(018): 3445-3454Wang S S , Cui X X , Huang Y Z , Xuan H D , Guo N , Xing H. Cloning and functional analysis of soybean GmWRKY148. Chinese Agricultural Science, 2018, 51(018): 3445-3454
    [77] 高红, 张传忠, 徐鹏飞, 张淑珍. BTB/POZ结构域蛋白GmBTB/POZ促进大豆AP2/ERF类转录因子GmAP2的泛素化和降解、调控对大豆疫霉菌的防御反应. 第十九届中国作物学会学术年会论文摘要集, 2020Gao H , Zhang C Z , Xu P F , Zhang S Z. BTB/POZ domain protein GmBTB/POZ promotes the ubiquitination and degradation of soybean AP2/ERF transcription factor GmAP2, and regulates the defense response to phytophthora sojae. Abstracts Of The 19th Annual Academic Meeting of China Crop Society, 2020
    [78] Zhang C Z, Cheng Q, Wang H Y, Gao H, Fang X, Chen X, Zhao M, Wei W L, Song B, Liu S S, Wu J J, Zhang S Z, Xu P F. GmBTB/POZ promotes the ubiquitination and degradation of LHP1 to regulate the response of soybean to Phytophthora sojae. Communications Biology, 2021, 4(1): 1-15
    [79] 崔晓霞. 大豆miR1510和GmWRKY40在抗疫霉根腐病中的功能与机制研究. 南京农业大学, 2017Cui X X. Function and mechanism of soybean mir1510 and GmWRKY40 in resistance to phytophthora root Rot. Nanjing Agricultural University, 2017
    [80] 刘维志. 植物病原线虫学. 中国农业出版社, 2000Liu W Z. Plant Pathogen Nematology. China Agriculture Press, 2000
    [81] Liu S, Kandoth P K, Warren S D, Yeckel G, Heinz R, Alden J, Yang C, Jamai A, El-Mellouki T, Juvale P S, Hill J, Baum T J, Cianzio S, Whitham S A, Korkin D, Mitchum M G, Meksem K. A soybean cyst nematode resistance gene points to a new mechanism of plant resistance to pathogens. Nature, 2012, 492(7428): 256–260
    [82] Yang Y, Zhou Y, Chi Y J, Fan B F, Chen Z X. Characterization of soybean WRKY gene family and identification of soybean WRKY genes that promote resistance to soybean cyst nematode. Scientific Reports, 2017, 7(1): 1-13
    [83] 李冉. 水稻抗虫相关基因OsWRKY24、OsWRKY70和OsNPR1的功能解析. 浙江大学, 2012Li R. Functional analysis of rice insect resistance-related genes OsWRKY24,OsWRKY70 and OsNPR1. Zhejiang University, 2012
    [84] 郑井元. 辣椒WRKY转录因子CaWRKY6和CaWRKY30基因的克隆表达及功能分析. 中南大学, 2012Zheng J Y. Cloning, Expression and function analysis of CaWRKY6 and CaWRKY30 genes of WRKY transcription factors in pepper. Central South University, 2012
    [85] 常艳勤. 棉花与烟粉虱互作相关基因的克隆及功能验证. 华中农业大学, 2018Chang Y Q. Cloning and functional verification of interaction related genes between cotton and bemisia tabaci. Central China Agricultural University, 2018
    [86] Liu Z S, Qin J X, Tian X J, Xu S B, Wang Y,SLi H X,SWang X M,SPeng H R,SYao Y Y,SHu Z R,SNi Z F,SXin M M,SSun Q X. Global profiling of alternative splicing landscape responsive to drought, heat and their combination in wheat (Triticum aestivum L.). Plant Biotechnology Journal, 2018, 16: 714-726
    [87] Li S, Fu Q, Chen L, Huang W, Yu D. Arabidopsis thaliana WRKY25, WRKY26, and WRKY33 coordinate induction of plant thermotolerance. Planta, 2011, 233(6): 1237-1252
    [88] El-Esawi M A, Al-Ghamdi A A, Ali H M, Ahmad M. Overexpression of AtWRKY30 transcription factor enhances heat and drought stress tolerance in wheat (Triticum aestivum L.). Genes, 2019, 10(2): 163
    [89] 刘媛媛. 小麦WRKY转录因子的鉴定分析与耐热相关基因的初步研究. 西北农林科技大学, 2019Liu Y Y . Identification and analysis of WRKY transcription factor and preliminary study on heat tolerance related genes in wheat. Northwest University of Agriculture And Forestry Science And Technology, 2019
    [90] Wu X L, Shiroto Y K, Kishitani S,Ito Y, Toriyama K. Enhanced heat and drought tolerance in transgenic rice seedlings overexpressing OsWRKY11 under the control of HSP101 promoter. Plant Cell Reports, 2009, 28(1): 21-30
    [91] Rinerson C I, Scully E D, Palmer N A, Donze-Reiner T, Rabara RC, Tripathi P, Shen QJ, Sattler SE, Rohila JS, Sarath G, Rushton PJ. The WRKY transcription factor family and senescence in switchgrass. BMC Genomics. 2015, 16: 912
    [92] Chen J, Nolan T M, Ye H, Zhang M, Tong H, Xin P, Chu J, Chu C, Li Z, Yin Y. Arabidopsis WRKY46, WRKY54, and WRKY70 transcription factors Are involved in brassinosteroid-regulated plant growth and drought responses. Plant Cell. 2017, 29(6): 1425-1439
    [93] 宁文峰, 庞添, 杨艳玲, 张超, 柏锡. 大豆GmWRKY20基因表达特性研究. 大豆科学, 2016, 35(05): 748-753Ning W F, Pang T, Yang Y L, Zhang C, Bai X. Study on the expression characteristics of soybean GmWRKY20 gene. Soybean Science, 2016, 35(05): 748-753
    [94] Chi Y, Yang Y, Zhou Y, Zhou J, Fan B, Yu J Q, Chen Z. Protein-protein interactions in the regulation of WRKY transcription factors. Mol Plant. 2013, 6(2):287-300
    [95] Ma X W, Su Z, Ma H. Molecular genetic analyses of abiotic stress responses during plant reproductive development.SJournal Of Experimental Botany. 2020, 71(10): 2870-2885
    [96] Verma V, Ravindran P, Kumar P P. Plant hormone-mediated regulation of stress responses. BMC Plant BiologyS, 2016, 16(1): 1-10
    Related
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

Copy
Related Videos

Share
0
Article Metrics
  • Abstract:704
  • PDF: 2022
  • HTML: 0
  • Cited by: 0
History
  • Received:October 11,2021
  • Revised:November 06,2021
  • Adopted:November 17,2021
  • Online: March 09,2022
  • Published:
Article QR Code
You are the th visitor 京ICP备09069690号-23
® 2025 All Rights Reserved
Supported by:Beijing E-Tiller Technology Development Co., Ltd.
Firefox, Chrome, IE10, IE11 are recommended. Other browsers are not recommended.