Fine Mapping of Rice Panicle Apical Abortion Gene ATS1 Using One F2:3 Single-gene-segregating Population
CSTR:
Author:
Affiliation:

1.School of City Comstruction, Lu'an Vocational College, Anhui Lu’an;2.College of Agronomy, Anhui Agricultural University;3.Institute of Crop cultivation and Tillage, Heilongjiang Academy of Agricultural Sciences;4.National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agriculture Sciences

Clc Number:

Fund Project:

The National Natural Science Foundation, China (91935303, 31871603)

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    The panicle apical abortion (PAAB) of rice is a typical quantitative trait determined by both genotypes that interact with growth environments (i.e. the ambient temperature). A chromosome segment substitution line Ats1 (aborted top spikelet mutant 1), which was originated from the cross-combination of Qiuguang ? Qishanzhan, was used for map-based cloning of the PAAB gene ATS1. Previous linkage analysis suggested that the candidate gene of AST1 was localized on chromosome 8, sharing a long fragment of positioning interval with that of the unidentified gene qPAA8. We compared the climate differences between 2018 and other years in Beijing and the phenotype of Ats1 under different growth environment conditions. The PAAB severity of Ats1 under the high environmental temperature in 2018 was significantly alleviated compared with ordinary years, indicating that high temperature might reduce the incidence of PAAB in Ats1. In addition, through the genetic analysis to the F2 population of newly created cross-combination IRAT129?Ats1, we further found that the genetic separation of PAAB obviously deviated from ratio of the single gene dominant inheritance, i.e. 3 PAAB to 1 normal, indicating that there are additional PAAB genes involved. Here we provided a convenient strategy on developing a single gene segregating population (SGSP), based on the phenotypic analysis in combination with marker-associated selection to individuals of F2:3 lines. Finally, we finally delimited the candidate gene of ATS1 to a 57 Kb interval including four potential candidate genes, settling a foundation for the final cloning of the target gene. This method could be helpful using in fine mapping on other complex traits easily affected by environmental conditions.

    Reference
    Related
    Cited by
Get Citation
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:January 12,2022
  • Revised:February 21,2022
  • Adopted:March 09,2022
  • Online: July 08,2022
  • Published:
Article QR Code
You are the th visitor 京ICP备09069690号-23
® 2024 All Rights Reserved
Supported by:Beijing E-Tiller Technology Development Co., Ltd.