2025-6-12- 0
  • Home
  • About Journal
  • Editorial Board
  • Author
    Instruction
    Copyright Agreement
  • Ethcis Statement
  • Subscribe
  • Contact
  • 中文
Home > Archive>Volume 23, Issue 4, 2022 >943-953. DOI:10.13430/j.cnki.jpgr.20220114001 Online First
PDF HTML XML Export Cite reminder
Progress on Induction and Application of Wheat Alien Chromosome Translocation Lines
DOI:
10.13430/j.cnki.jpgr.20220114001
CSTR:
Author:
  • CAO Ya-ping

    CAO Ya-ping

    Institute of Wheat Research, Shanxi Agricultural University
    Find this author on All Journals
    Find this author on BaiDu
    Search for this author on this site
  • WU Yin-yu

    WU Yin-yu

    Institute of Wheat Research, Shanxi Agricultural University
    Find this author on All Journals
    Find this author on BaiDu
    Search for this author on this site
  • LIU Bo

    LIU Bo

    Institute of Wheat Research, Shanxi Agricultural University
    Find this author on All Journals
    Find this author on BaiDu
    Search for this author on this site
  • FAN Shao-qiang

    FAN Shao-qiang

    Institute of Wheat Research, Shanxi Agricultural University
    Find this author on All Journals
    Find this author on BaiDu
    Search for this author on this site
Affiliation:

Institute of Wheat Research, Shanxi Agricultural University

Clc Number:

Fund Project:

National Natural Science Foundation of China(YGJPY2003)

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference [85]
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    The narrow genetic basis is the major bottleneck for wheat genetic improvement. To broaden wheat genetic resources by using beneficial genes from related species is an important way to produce new wheat germplasm resource. Chromosome engineering is an effective approach to introgress wheat foreign targeted genes into wheat genomes. Homoeologous recombination and ionizing radiation are two high-effective techniques for inducing wheat alien chromosome translocations, both of which can induce chromosome structural variations in a short period of time and have been widely used in practice. This study briefly reviewed the progress of Chinese Spring ph1b mutant and 60Co-γ-ray irradiation on mutagenesis characteristics and application in wheat germplasm innovation. Combination of oligonucleotide FISH will facilitate introgression and accurate identification of alien genes, as well as improve the efficiency of chromosome engineering. This study provides useful information for further mining and application of wheat alien genes via chromosome engineering for broadening genetic basis and promoting studies in genetics and genomics of wheat.

    Key words:wheat, wheat relatives, ph1b mutagenesis, ionizing radiation, oligonucleotide probe
    Reference
    [1]白彦明, 李龙, 王绘艳, 柳玉平, 王景一, 毛新国, 昌小平, 孙黛珍, 景蕊莲. 蚂蚱麦和小白麦衍生系的遗传多样性分析. 作物学报, 2019, 45(10): 1468-1477Bai Y M, Li L, Wang H Y, Liu Y P, Wang J Y, Mao X G, Chang X P, Sun D Z, Jing R L. Genetic diversity assessment in derivative offspring of Mazhamai and Xiaobaimai wheat. Acta Agronomica Sinica, 2019, 45(10): 1468-1477
    [2]Feldman M, Sears E R. The wild gene resources of wheat. Scientific American, 198l, 244(1): 102-112
    [3]Jiang J M, Friebe B, Gill B S. Recent advances in alien gene transfer in wheat. Euphytica, 1994, 73: 199-212
    [4]蒋勃, 张淑欣, 王惠, 史玥, 李紫琪, 朱蕾, 宋维富, 杨雪峰, 宋庆杰, 李新玲, 张延明. 中间偃麦草种质改良及基因组学育种研究进展. 植物遗传资源学报, 2020, 21(06): 1385-1394Jiang B, Zhang S X, Wang H, Shi Y, Li Z Q, Zhu L, Song W F, Yang X F, Song Q J, Li X L, Zhang Y M. Genetic improvement and genomics-assisted breeding of the germplasm resource Thinopyrum intermedium. Journal of Genetic Resources, 2020, 21(06): 1385-1394
    [5]Dai K, Zhao R, Shi M, Xiao J, Yu Z, Jia Q, Wang Z, Yuan C, Sun H, Cao A, Zhang R, Chen P, Li Y, Wang H, Wang X. Dissection and cytological mapping of chromosome arm 4VS by the development of wheat-Haynaldia villosa structural aberration library. Theoretical and Applied Genetics. 2020, 133(1): 217-226
    [6]Copete-Parada A, Palomino C, Cabrera A. Development and characterization of wheat-Agropyron cristatum introgression lines induced by gametocidal genes and wheat ph1b mutant. Agronomy, 2021, 11(2):277
    [7]Riley R, Chapman V. Genetic control of the cytologically diploid behaviour of hexaploid wheat. Nature, 1958, 182: 713-715
    [8]Bhullar R, Nagarajan R, Bennypaul H, Sidhu G K, Sidhu G, Rustgi S, vonWettstein D, Gill K S. Silencing of a metaphase I-specific gene results in a phenotype similar to that of the pairing homeologous 1 (Ph1) gene mutations. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111: 14187-14192
    [9]Wall A M, Riley R, Gale M D. The position of a locus on chromosome 5B of Triticum aestivum affecting homoeologous meiotic pairing. Genetical Research, 1971, 18(3): 329-339
    [10]Martín A C, Rey M D, Shaw P, Moore G. Dual effect of the wheat Ph1 locus on chromosome synapsis and crossover. Chromosoma, 2017, 126(6): 669-680
    [11]Sears E R. An induced mutant with homoeologous Pairing in common wheat. Canadian Journal of Genetics and Cytology, 1977, 19: 585-593
    [12]Gyawali Y, Zhang W, Chao S, Xu S, Cai X. Delimitation of wheat ph1b deletion and development of ph1b-specific DNA markers. Theoretical and Applied Genetics, 2019, 132: 195-204
    [13]Koebner R M D, Shepherd K W. Induction of recombination between rye chromosome 1RL and wheat chromosomes. Theoretical and Applied Genetics, 1985, 71(2): 208-215
    [14]Koebner R M D, Shepherd K W. Controlled introgression to wheat of genes from rye chromosome arm 1RS by induction of allosyndesis. Theoretical and Applied Genetics, 1986, 73(2): 197-208
    [15]Yu M Q, Deng G B, Zhang X P, Ma X Q, Chen J. Effect of ph1b mutant on chromosome pairing in hybrids between Dasypyrum villosum and Triticum aestivum. Plant Breeding, 2001, 120(4): 285-289
    [16]Taketa S, Awayama T, Ichii M, Sunakawa M, Kawahara T, Murai K. Molecular cytogenetic identification of nullisomy 5B induced homoeologous recombination between wheat chromosome 5D and barley chromosome 5H. Genome, 2005, 48(1): 115-124
    [17]Lukaszewski A J. Physical distribution of translocation breakpoints in homoeologous recombinants induced by the absence of the Ph1 gene in wheat and triticale. Theoretical and Applied Genetics, 1995, 90(5): 714-719
    [18]Lukaszewski A J, Rybka K, Korzun V, Malyshev S V, Lapinski B, Whitkus R. Genetic and physical mapping of homoeologous recombination points involving wheat chromosome 2B and rye chromosome 2R. Genome, 2004, 47(1): 36-45
    [19]Wan W, Xiao J, Li M, Tang X, Wen M, Cheruiyot A K, Li Y, Wang H, Wang X. Fine mapping of wheat powdery mildew resistance gene Pm6 using 2B/2G homoeologous recombinants induced by the ph1b mutant. Theoretical and Applied Genetics, 2020, 133: 1265-1275
    [20]Niu Z, Klindworth D L, Yu G, Friesen T L, Chao S, Jin Y, Cai X, Ohm J B, Rasmussen J B, Xu S S. Development and characterization of wheat lines carrying stem rust resistance gene Sr43 derived from Thinopyrum ponticum. Theoretical and Applied Genetics, 2014, 127(4), 969–980
    [21]Hao M, Liu M, Luo J, Fan C, Yi Y, Zhang L, Yuan Z, Ning S, Zheng Y, Liu D. Introgression of powdery mildew resistance gene Pm56 on rye chromosome arm 6RS into wheat. Frontiers in Plant Science, 2018, 9:1040
    [22]Liu W X, Koo D H, Xia Q, Li C X, Bai F Q, Song Y L, Friebe B, Gill B S. Homoeologous recombination based transfer and molecular cytogenetic mapping of powdery mildew resistant gene Pm57 from Aegilops searsii into wheat. Theoretical and Applied Genetics, 2017, 130(4): 841-848
    [23]Dundas I, Zhang P, Verlin D, Graner A, Shepherd K. Chromosome engineering and physical mapping of the translocation in wheat carrying the rust resistance gene. Crop Science, 2015, 55(2): 648-657
    [24]Mago R, Verlin D, Zhang P, Bansal U, BarianaH, Jin Y, Ellis J, Hoxha S, Dundas I. Development of wheat-Aegilops speltoides recombinants and simple PCR-based markers for Sr32 and a new stem rust resistance gene on the 2S#1 chromosome. Theoretical and Applied Genetics, 2013, 126(12): 2943-2955
    [25]Li H, Dong Z, Ma C, Tian X, Qi Z, Wu N, Friebe B, Xiang Z, Xia Q, Liu W, Li T. Physical mapping of stem rust resistance gene Sr52 from Dasypyrum villosum based on ph1b-induced homoeologous recombination. International journal of Molecular Sciences, 2019, 20(19): 4887
    [26]Ferrahi M, Friebe B, Hatchett J H, Guedira G, Gill B S. Two step transfer of rye-derived Hessian fly-resistance gene H21 to durum wheat by compensating robertsonian translocation and induced homoeologous recombination. International Journal of Advanced Research, 2017, 5(10), 262-270
    [27]Zhao R, Wang H, Xiao J, Bie T, Cheng S, Jia Q, Yuan C, Zhang R, Cao A, Chen P, Wang X. Induction of 4VS chromosome recombinants using the CS ph1b mutant and mapping of the wheat yellow mosaic virus resistance gene from Haynaldia villosa. Theoretical and Applied Genetics, 2013, 126: 2921-2930
    [28]Danilova TV, Zhang G, Liu W, Frieb B, Gill BS. Homoeologous recombination-based transfer and molecular cytogenetic mapping of a wheat streak mosaic virus and Triticum mosaic virus resistance gene Wsm3 from Thinopyrum intermedium to wheat. Theoretical and Applied Genetics, 2016, 130(3): 549-556
    [29]Xin Z Y, Zhang Z Y, Chen X, Lin Z S, Ma Y Z, Xu H J, Banks P M, Larkin P J. Development and characterization of common wheat-Thinopyrum intermedium translocation lines with resistance to barley yellow dwarf virus. Euphytica, 2001, 119: 161–165
    [30]Zhang Z, Xu J, Xu Q, Larkin P, Xin Z. Development of novel PCR markers linked to the BYDV resistance gene Bdv2 useful in wheat for marker-assisted selection. Theoretical and Applied Genetics, 2004, 109(2):433-439
    [31]Haldar A, Tekieh F, Balcerzak M, Wolfe D, Lim D, Joustra K, Konkin D, Han F, Fedak G, Ouellet T. Introgression of Thinopyrum elongatum DNA fragments carrying resistance to fusarium head blight into Triticum aestivum cultivar Chinese Spring is associated with alteration of gene expression. Genome, 2021, doi: 10.1139/gen-2020-0152
    [32]Sharma Y, Sheikh I, Sharma A, Yadav A N, Kumar K, Chhuneja P, Ram S, Kumar S, Vyas P, Dhaliwal, H S. Transfer of grain softness from 5U-5A wheat-Aegilops triuncialis substitution line to bread wheat through induced homeologous pairing. Journal of Plant Biochemistry and Biotechnology. 2020, 29(3): 407-417
    [33]Li Y, Li Q, Li Y, Lan J, Tang H, Qi P, Ma J, Wang J, Chen G, Pu Z, Li W, Li Z, Harwood W, Lan X, Deng M, Wei Y, Zheng Y, Jiang Q. Transfer of the ph1b gene of 'Chinese Spring' into a common wheat cultivar with excellent traits. Cereal Research Communications, 2020, 48: 283-291
    [34]Sánchez-Morán E, Benavente E, Orellana J. Analysis of karyotypic stability of homoeologous-pairing(ph) mutants in allopolyploid wheats. Chromosoma, 2001, 110: 371-377
    [35]Snape J W, Parker B B, Simpson E, Ainsworth C C, Payne P I, Law C N. The use of irradiated pollen for differential gene transfer in wheat. Theoretical and Applied Genetics, 1983, 65: 103-111
    [36]Jubault M, Tanguy A M, Abélard P, Coriton O, Dusautoir J C, Jahier J. Attempts to induce homoeologous pairing between wheat and Agropyron cristatum genomes. Genome, 2006, 49(2): 190-193
    [37]Li H, Lv M, Song L, Zhang J, Gao A, Li L, Liu W. Production and identification of wheat-Agropyron cristatum 2P translocation lines. PLoS One, 2016, 11(1): e0145928
    [38]Lu M, Lu Y, Li H, Pan C, Guo Y, Zhang J, Yang X, Li X, Liu W, Li L. Transferring desirable genes from Agropyron cristatum 7P chromosome into common wheat. PloS one, 2016, 11(7): e0159577
    [39]Zheng Q, Li B, Zhang X, Mu S, Zhou H, Li Z. Molecular cytogenetic characterization of wheat-Thinopyrum ponticum translocations bearing blue-grained gene(s) induced by γ-ray. Euphytica, 2006, 152(1): 51-60
    [40]Liu L, Luo Q, Li H, Li B, Li Z, Zheng Q. Physical mapping of the blue-grained gene from Thinopyrum ponticum chromosome 4Ag and development of blue-grain-related molecular markers and a FISH probe based on SLAF-seq technology. Theoretical and Applied Genetics, 2018, 131: 2359-2370
    [41]Molnár I, Benavente E, Molnár-Láng M. Detection of intergenomic chromosome rearrangements in irradiated Triticum aestivum–Aegilops biuncialis amphiploids by multicolour genomic in situ hybridization. Genome, 2009, 52(2): 156-165
    [42]Bie T D, Cao Y P, Chen P D. Mass production of intergeneric chromosomal translocations through pollen irradiation of Triticum durum-Haynaldia villosa amphiploid. Journal of Integrative Plant Biology, 2007, 49(11): 1619-1626
    [43]Cao Y, Bie T, Wang X, Chen P. Induction and transmission of wheat-Haynaldia villosa chromosomal translocations. Journal of Genetics and Genomics, 2009, 36: 313-320
    [44]曹亚萍, 别同德, 陈佩度, 范绍强, 周元成, 张姝敏. 小麦-簇毛麦属间染色体易位系的高效诱导. 植物遗传资源学报, 2011, 12 (3): 437-441Cao Y P, Bie T D, Chen P D, Fan S Q, Zhou Y C, Zhang S M. High induction of intergeneric chromosome translocation lines between wheat and Haynaldia villosa. Journal of Plant Genetic Resources, 2011, 12 (3): 437-441
    [45]王从磊, 庄丽芳, 亓增军. 辐射诱导荆州黑麦染色体1R结构变异的研究. 核农学报, 2012, 26(1): 28-31+42Wang C L, Zhuang L F, Qi Z J. Structural variations of chromosome 1R from rye cultivar Jingzhouheimai induced by irradiation. Journal of Nuclear Agricultural Sciences, 2012, 26(1): 28-31+42
    [46]Pu J, Wang Q, Shen Y, Zhuang L, Li C, Tan M, Bie T, Chu C, Qi Z. Physical mapping of chromosome 4J of Thinopyrum bessarabicum using gamma radiation-induced aberrations. Theoretical and Applied Genetics, 2015, 128(7): 1319-1328
    [47]Song L, Jiang L, Han H, Gao A, Yang X, Li L, Liu W. Efficient induction of wheat-Agropyron cristatum 6P translocation lines and GISH detection. PLoS One, 2013, 8(7): e69501
    [48]Zhang J, Zhang J, Liu W, Han H, Lu Y, Yang X, Li X, Li L. Introgression of Agropyron cristatum 6P chromosome segment into common wheat for enhanced thousand-grain weight and spike length. Theoretical and Applied Genetics, 2015, 128(9): 1827-1837
    [49]Chen S W, Chen P D, Wang X E. Inducement of chromosome translocation with small alien segments by irradiating mature female gametes of the whole arm translocation line. Science in China Series C: Life Sciences, 2008, 51(4): 346-352
    [50]李海风, 罗贤磊, 段亚梅, 戴毅, 高勇, 张军, 张璐璐, 陈建民. 小麦-长穗偃麦草T7BS.7EL易位系鉴定及7EL小片段易位诱导. 麦类作物学报, 2018, 38(5): 513-520Li H F, Luo X L, Duan Y M, Dai Y, Gao Y, Zhang J, Zhang L L, Chen J M. Identification of wheat-Thinopyrum elongatum translocation line T7BS.7EL and induction of small fragment translocations involving 7EL chromosome. Journal of Triticeae Crops, 2018, 38(5): 513-520
    [51]齐莉莉, 陈佩度, 刘大钧, 周波, 张守中, 盛宝钦, 向齐君, 段霞渝, 周益林. 小麦白粉病新抗源-基因Pm21. 作物学报, 1995, 21 (3): 257-262Qi L L, Chen P D, Liu D J, Zhou B, Zhang S Z, Sheng B Q, Xiang Q J, Duan X Y, Zhou Y L. The gene Pm21- a new source for resistance to wheat powdery mildew. Acta Agronomica Sinica, 1995, 21 (3): 257-262
    [52]Chen P D, Qi L L, Zhou B, Zhang S Z, Liu D J. Development and molecular cytogenetic analysis of wheat-Haynaldia villosa 6VS/6AL translocation lines specifying resistance to powdery mildew. Theoretical and Applied Genetics, 1995, 91: 1125-1128
    [53]Qi L L, Cao M S, Chen P D, Li W L, Liu D J. Identification, mapping and application of polymorphic DNA associated with resistance gene Pm21 of wheat. Genome, 1996, 39: 191-197
    [54]Cao A Z, Wang X E, Chen Y P, Zou X W, Chen P D. A sequence-specific PCR marker linked with Pm21 distinguishes chromosomes 6AS, 6BS, 6DS of Triticum aestivum and 6VS of Haynaldia villosa. Plant Breeding, 2006, 125: 201-205
    [55]延荣, 耿妙苗, 李晓静, 安浩军, 温树敏, 刘桂茹, 王睿辉. 河北省小麦品种和种质资源抗白粉病鉴定与抗病基因分子标记检测. 植物遗传资源学报, 2020, 21(03): 683-694Yan R, Geng M M, Li X J, An H J, Wen S M, Liu G R, Wang R H. Phenotyping and marker-assisted gene identification of powdery mildew resistance in wheat commercial varieties and germplasm resources from Hebei province. Journal of Plant Genetic Resources, 2020, 21(03): 683-694
    [56]吕国锋, 别同德, 王慧, 赵仁慧, 范金平, 张伯桥, 吴素兰, 王玲, 汪尊杰, 高德荣. 长江下游麦区新育成品种(系) 3种主要病害的抗性鉴定及抗病基因/QTL的分子检测.作物学报, 2021, 47(12): 2335-2347Lv G F, Bie T D, Wang H, Zhao R H, Fan J P, Zhang B Q, Wu S L, Wang L, Wang Z J, Gao D R. Evaluation and molecular detection of three major diseases resistance of new bred wheat varieties (lines) from the lower reaches of the Yangtze River. Acta Agronomica Sinica, 2021, 47(12): 2335-2347
    [57]Chen P, You C, Hu Y, Chen S, Zhou B, Cao A, Wang X. Radiation-induced translocations with reduced Haynaldia villosa chromatin at the Pm21 locus for powdery mildew resistance in wheat. Molecular Breeding, 2013, 31(2): 477-484
    [58]王海燕, 肖进, 袁春霞, 徐涛, 于春艳, 孙昊杰, 陈佩度, 王秀娥. 携带抗白粉病基因Pm21的小麦–簇毛麦小片段易位染色体在不同小麦背景中的传递率及遗传稳定性. 作物学报, 2016, 42(3): 361-367Wang H Y, Xiao J, Yuan C X, Xu T, Yu C Y, Sun H J, Chen P D, Wang X E. Transmission and genetic stability of no-homoeologous small fragment wheat–Haynaldia villosa translocation chromosomes with Pm21 in various cultivar backgrounds of common wheat. Acta Agronomica Sinica, 2016, 42(3): 361-367
    [59]Zhang R, Zhang M, Wang X, Chen P. Introduction of chromosome segment carrying the seed storage protein genes from chromosome 1V of Dasypyrum villosum showed positive effect on bread-making quality of common wheat. Theoretical and Applied Genetics, 2014, 127:523-533
    [60]Zhang R, Cao Y, Wang X, Feng Y, Chen P. Development and characterization of a Triticum aestivum-H. villosa T5VS?5DL translocation line with soft grain texture. Journal of Cereal Science, 2010, 51(2): 220-225
    [61]Zhang R, Wang X, Chen P. Molecular and cytogenetic characterization of a small alien-segment translocation line carrying the softness genes of Haynaldia villosa. Genome, 2012, 55: 639-646
    [62]Verma S K, Kumar S, Sheikh I, Malik S, Mathpal P, Chugh V, Kumar S, Prasad R, Dhaliwal H S. Transfer of useful variability of high grain iron and zinc from Aegilops kotschyi into wheat through seed irradiation approach. International Journal of Radiation Biology, 2016, 92(3): 132–139
    [63]Zhang R, Hou F, Feng Y, Zhang W, Zhang M, Chen P. Characterization of a Triticum aestivum-Dasypyrum villosum T2VS?2DL translocation line expressing a longer spike and more kernels traits. Theoretical and Applied Genetics, 2015, 128:2415-2425
    [64]Zhuang L, Liu P, Liu Z, Chen T, Wu N, Sun L, Qi Z. Multiple structural aberrations and physical mapping of rye chromosome 2R introgressed into wheat. Molecular Breeding, 2015, 35(6): 133
    [65]Zheng Q, Li B, Mu S M, Zhou H P, Li Z S. Physical mapping of the blue-grained gene(s) from Thinopyrum ponticum by GISH and FISH in a set of translocation lines with different seed colors in wheat. Genome, 2006, 49: 1109-1114
    [66]Li H H, Jiang B, Wang J C, Lu Y Q, Zhang J P, Pan C L, Yang X M, Li X Q, Liu W H, Li L H. Mapping of novel powdery mildew resistance gene(s) from Agropyron cristatum chromosome 2P. Theoretical and Applied Genetics, 2017, 130: 109-121
    [67]Cuadrado á, Golczyk H, Jouve N. A novel, simple and rapid nondenaturing FISH (ND-FISH) technique for the detection of plant telomeres. Potential use and possible target structures detected. Chromosome Research An International Journal on the Molecular Supramolecular Evolutionary Aspects of Chromosome Biology, 2009, 17(6):755-762
    [68]Cuadrado á, Jouve N. Chromosomal detection of simple sequence repeats (SSRs) using nondenaturing FISH (ND-FISH). Chromosoma, 2010, 119: 495–503
    [69]Lei J, Zhou J, Sun H, Wan W, Xiao J, Yuan C, Karafiátová M, Dole?el J, Wang H, Wang X. Development of oligonucleotide probes for FISH karyotyping in Haynaldia villosa, a wild relative of common wheat. The Crop Journal, 2020, 8: 676-681
    [70]Yu Z, Wang H, Jiang W, Jiang C, Yuan W, Li G, Yang Z. Karyotyping Dasypyrum breviaristatum chromosomes with multiple oligonucleotide probes reveals the genomic divergence in Dasypyrum. Genome. 2021, 64(8): 789-800
    [71]Wang H, Yu Z, Li G, Yang Z. Diversified chromosome rearrangements detected in a wheat?Dasypyrum breviaristatum substitution line induced by Gamma-ray irradiation. Plants, 2019, 8(6): 175
    [72]Cui Y, Zhang Y, Qi J, Wang H, Wang R R C, Bao Y, Li X. Identification of chromosomes in Thinopyrum intermedium and wheat Th. intermedium amphiploids based on multiplex oligonucleotide probes. Genome, 2018, 61(7): 515-521
    [73]Xi W, Tang Z, Tang S, Yang Z, Luo J, Fu S. New ND-FISH-positive oligo probes for identifying Thinopyrum chromosomes in wheat backgrounds. International Journal of Molecular Sciences, 2019, 20(8), 2031
    [74]Singh A K, Zhang P, Dong C, Li J, Singh S, Trethowan R M, Sharp P J. Development and molecular cytogenetic characterization of Thinopyrum bessarabicum introgression lines in hexaploid and tetraploid wheats. Theoretical and Applied Genetics, 2020, 133(7): 2117-2130
    [75]Tang Z, Yang Z, Fu S. Oligonucleotides replacing the roles of repetitive sequences pAs1, pSc119.2, pTa-535, pTa71, CCS1, and pAWRC.1 for FISH analysis. Journal of Applied Genetics, 2014, 55(3): 313-318
    [76]Xi W, Tang S, Du H, Luo J, Tang Z, Fu S. ND-FISH-positive oligonucleotide probes for detecting specific segments of rye (Secale cereale L.) chromosomes and new tandem repeats in rye. Crop Journal, 2020, 8(2): 171-181
    [77]Xiao Z, Tang S, Qiu L, Tang Z, Fu S. Oligonucleotides and ND-FISH displaying different arrangements of tandem repeats and identification of Dasypyrum villosum chromosomes in wheat backgrounds. Molecules, 2017, 22(6): 973
    [78]Sun H, Song J, Lei J, Song X, Dai K, Xiao J, Yuan C, An S, Wang H, Wang X. Construction and application of oligo-based FISH karyotype of Haynaldia villosa. Journal of Genetics and Genomics, 2018, 45: 463-466
    [79]Said M, H?ibová E, Danilova TV, Karafiátová M, ?í?ková J, Friebe B, Dole?el J, Gill BS, Vrána J. The Agropyron cristatum karyotype, chromosome structure and cross-genome homoeology as revealed by fluorescence in situ hybridization with tandem repeats and wheat single-gene probes. Theoretical and Applied Genetics, 2018, 131: 2213-2227
    [80]Liu C,Gong W,Han R,Guo J,Li G,Li H,Song J,Liu A,Cao X,Zhai S,Cheng D,Li G,Zhao Z,Yang Z,Liu J,Reader SM. Characterization, identification and evaluation of a set of wheat-Aegilops comosa chromosome lines. Scientific Reports, 2019, 9(1): 4773
    [81]Tang, S.Y., Qiu, L., Xiao, Z.Q., Fu, S.L., and Tang, Z.X. New oligonucleotide probes for ND-FISH analysis to identify barley chromosomes and to investigate polymorphisms of wheat chromosomes. Genes, 2016, 7(12): 12
    [82]Rey MD, Moore G, Martín AC. Identification and comparison of individual chromosomes of three accessions of Hordeum chilense, Hordeum vulgare, and Triticum aestivum by FISH. Genome, 2018, 61(6): 387-396
    [83]王丹蕊, 杜培, 裴自友, 庄丽芳, 亓增军. 基于寡核苷酸探针套painting的小麦“中国春”非整倍体高清核型及应用. 作物学报, 2017, 43(11): 1575-1587Wang D R, Du P, Pei Z Y, Zhuang L F, Qi Z J. Development and application of high resolution karyotypes of wheat “ChineseSpring” aneuploids. Acta Agronomica Sinica, 2017, 43(11): 1575-1587
    [84]Tang S, Tang Z, Qiu L, Yang Z, Li G, Lang T, Zhu W, Zhang J, Fu S. Developing new oligo probes to distinguish specific chromosomal segments and the A, B, D genomes of wheat (Triticum aestivum L.) using ND-FISH. Frontiers in Plant Science, 2018, 9: 1104
    [85]Lang T, Li G, Wang H, Yu Z, Chen Q, Yang E, Fu S, Tang Z, Yang Z. Physical location of tandem repeats in the wheat genome and application for chromosome identification. Planta, 2019, 249: 663-675
    Related
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

Copy
Related Videos

Share
0
Article Metrics
  • Abstract:693
  • PDF: 3525
  • HTML: 0
  • Cited by: 0
History
  • Received:January 14,2022
  • Revised:February 27,2022
  • Adopted:March 15,2022
  • Online: July 08,2022
  • Published:
Article QR Code
You are the 675768th visitor 京ICP备09069690号-23
® 2025 All Rights Reserved
Supported by:Beijing E-Tiller Technology Development Co., Ltd.
Firefox, Chrome, IE10, IE11 are recommended. Other browsers are not recommended.