Abstract:In recent years, cadmium and arsenic contamination in China's farmland has became increasingly serious, resulting in the occurrence of excessive cadmium and arsenic in grains. Rice is the main food for about half of the world's population. Cadmium and arsenic in the soil will accumulate in the human body through the enrichment of the food chain after being absorbed by rice, thereby harming human health. Therefore, reducing the accumulation of cadmium and arsenic in rice has became an urgent and important issue to ensure grain quality security and promote the development of rice industry. To study the accumulation mechanism of cadmium and arsenic in rice and to cultivate rice varieties with low accumulation of cadmium and arsenic is the most economical way to solve the excessive cadmium and arsenic in grains, which is of great significance to realize the safe production of rice in contaminated farmland. In this review, we summarize the morphology and bioavailability of cadmium and arsenic in farmland, the molecular mechanism of cadmium and arsenic uptake and transport in rice, and the main mechanism of rice tolerance to cadmium and arsenic. We also review the progress in breeding of rice cultivars with low cadmium and arsenic level in grains, and prospected the future development direction. The purpose of this paper is providing some references for reducing cadmium and arsenic content in rice grains.