2025-5-22- 17
  • Home
  • About Journal
  • Editorial Board
  • Author
    Instruction
    Copyright Agreement
  • Ethcis Statement
  • Subscribe
  • Contact
  • 中文
Home > Archive>Volume 24, Issue 5, 2023 >1215-1222. DOI:10.13430/j.cnki.jpgr.20230221003 Online First
PDF HTML XML Export Cite reminder
Research Progress of DNA Methylation on Regulating the Growth, Development and Abiotic Stress Response of Horticultural Plants
DOI:
10.13430/j.cnki.jpgr.20230221003
CSTR:
Author:
  • CHI Xiaona 1

    CHI Xiaona

    College of Horticulture,Gansu Agricultural University, Lanzhou 730070
    Find this author on All Journals
    Find this author on BaiDu
    Search for this author on this site
  • ZHANG Huanhuan 2

    ZHANG Huanhuan

    College of Horticulture, Nanjing Agricultural University, Nanjing 210095
    Find this author on All Journals
    Find this author on BaiDu
    Search for this author on this site
  • GU Wenyuan 1

    GU Wenyuan

    College of Horticulture,Gansu Agricultural University, Lanzhou 730070
    Find this author on All Journals
    Find this author on BaiDu
    Search for this author on this site
  • ZHANG Xingmin 1

    ZHANG Xingmin

    College of Horticulture,Gansu Agricultural University, Lanzhou 730070
    Find this author on All Journals
    Find this author on BaiDu
    Search for this author on this site
  • WANG Yuping 1

    WANG Yuping

    College of Horticulture,Gansu Agricultural University, Lanzhou 730070
    Find this author on All Journals
    Find this author on BaiDu
    Search for this author on this site
Affiliation:

1.College of Horticulture,Gansu Agricultural University, Lanzhou 730070;2.College of Horticulture, Nanjing Agricultural University, Nanjing 210095

Clc Number:

Fund Project:

National Natural Science Foundation of China (31760351)

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference [65]
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    As one of the important mechanisms of epigenetic regulation, usually occurs in plant cytosine bases, including CG, CHG and CHH. DNA methylation mainly affects chromatin structure and gene transcription level. DNA methylation plays important roles in transcriptional regulation and maintaining the genome stability. Abiotic stresses affect plant growth and reproduction and ultimately lead to plant death. Based on existing research findings, DNA methylation can induce phenotypic alterations in plants under stress.To cope with abiotic stresses, the change mechanism of DNA methylation level during growth is affected by methylase and demethylase. The signal transduction pathways can change the expression of some stress response genes, thus causing changes in plant morphology, physiology and biochemistry to adapt to adversity. Some genes are upregulated (initiate) or downregulated (close down) in expression in order to assure the adaptive growth and development of plant, thus enabling plants to adapt and resist stress damage to a certain extent. This article reviews the DNA methylation modification and its role in transcriptional regulation, research progress in the growth and development of horticultural plants, and the epigenetic regulation of abiotic stress as well as the problems and prospective of horticultural plants. It provides a reference for the genetic improvement of horticultural plants and deciphering the mechanism of stress resistance.

    Key words:DNA methylation;abiotic stress;growth and development;horticultural plants;epigenetic regulation
    Reference
    [1] Niederhuth C E, Bewick A J, Ji L, Alabady M S, Kim K D, Li Q, Rohr N A, Rambani A, Burke U J A, Egesi C, Schmutz J, Grimwood J, Jackson S A, Springer N M, Schmitz J M. Widespread natural variation of DNA methylation within angiosperms. Science, 2018, 362: 1182-1186
    [2] Li J, Jia W, Wang H. Morpho-physiological adaptation and DNA methylation of wheat seedlings under osmotic stress. Crop and Pasture Science, 2020, 52: 349-355
    [3] Tang K, Lang Z B, Zhang H, Zhu J K. The DNA demethylase ROS1 targets genomic regions with distinct chromatin modifications. Nature Plants, 2016, 2: 16169
    [4] Zhang H M, Lang Z B, Zhu J K. Dynamics and function of DNA methylation in plants. Nature Reviews Molecular Cell Biology, 2018, 19: 489-506
    [5] Liu G F, Xia Y D, Liu T K, Dai S J, Hou X L. The DNA methylome and association of differentially methylated regions with differential gene expression during heat stress in Brassica rapa. International Journal of Molecular Sciences, 2018, 19(5): 1414
    [6] Calarco J P, Borges F, Donoghue M T A, Van Ex F, Jullien P, Lopes T, Gardner R, Berger F, Feijó J A, Becker J D, Martienssen R A.Reprogramming of DNA methylation in pollen guides epigenetic inheritance via small RNA. Cell, 2012, 151: 194-205
    [7] Ingouff M, Selles B, Michaud C. Live-cell analysis of DNA methylation during sexual reproduction in Arabidopsis reveals context and sexspecific dynamics controlled by noncanonical RdDM. Genes and Development, 2017, 31: 72-83
    [8] Cécile D, Mounir E M, Dominique G, Arnaud C, Cyrielle P, Paola B, Jo?lle R. Combined analysis of DNA methylation and cell cycle in cancer cells. Epigenetics, 2015, 10(1): 82-91
    [9] Michael T P. Plant genome size variation: Bloating and purging DNA. Briefings in Functions Genomics, 2014, 13: 308-317
    [10] 毛新国, 李昂, 景蕊莲. 植物DNA甲基化与作物种质资源保存. 植物遗传资源学报, 2010, 11(6): 659-665,697Mao X G, Li A, Jing R L. Plant DNA mehtylation and crop germplasm conservation. Journal of Plant Genetic Resources, 2010,11(6): 659-665,697
    [11] Manu J D, Zhang P, Meng D Z, Marie-Stanislas R, Francesco P C, Philipp D, André K, Geraldine J, Bjarni V, Joanna J, Selen I , Viktor V, Song Q, Long Q, Gunnar R, Oliver S, Richard M C, Magnus N. DNA methylation in Arabidopsis has a genetic basis and shows evidence of local adaptation. eLife, 2015, 4: e05255
    [12] Fariborz H, Tie L, Kevin F, Ali S. Physiological, biochemical, and molecular aspects of grafting in fruit trees. Horticulture Research, 2022, 10: 32
    [13] Cao L, Yu N, Li J. Heritability and reversibilityof DNA methylation induced by in vitro grafting between Brassica juncea and B. oleracea. Scientific Reports, 2016, 6: 27233
    [14] Avramidou E, Kapazoglou A, Aravanopoulos F A, Xanthopoulou A, Ganopoulos I, Tsaballa A, Madesis P, Doulis A G, Tsaftaris A. Global DNA methylation changes in Cucurbitaceae inter-species grafting. Crop Breeding and Applied Biotechnology, 2015, 15: 112-116
    [15] Qi X Y, Wang H B, Song A P, Jiang J F, Chen S M, Chen F D. Genomic and transcriptomic alterations following intergeneric hybridization and polyploidization in the Chrysanthemum nankingense×Tanacetum vulgare hybrid and allopolyploid (Asteraceae). Horticulture Research, 2018, 5: 5
    [16] Bruno H, Tatsuo K, Lucia D, Werner A, Antonius J M, Marjori M. Endogenous targets of RNA directed DNA methylation and polIV in Arabidopsis. The EMBO Journal, 2006, 25(12): 2828-2836
    [17] Kondo H, Shiraya T, Wada K C, Takeno K. Induction of flowering by DNA demethylation in perilla frutescens and silene armeria: Heritability of 5-azac dine-induced effects and alteration of the DNA methylation state by photoperiodic conditions. Plant Science, 2010, 178(3): 321-326
    [18] 张涛, 司福会, 张玉喜, 盖树鹏. 外源GA3影响牡丹花芽DNA甲基化水平和相关酶基因的表达分析. 中国农业科学, 2018, 51(18): 3561-3569Zhang T, Si F H, Zhang Y X, Gai S P. Effect of exogenous gibberellin on DNA methylation level expression of related enzyme genes in tree peony floral buds. Scientia Agricultura Sinica, 2018, 51(18): 3561-3569
    [19] Li S F, Zhang G J, Yuan J H, Deng C L, Gao W J. Repetitive sequences and epigenetic modification:Inseparable partners play important roles in the evolution of plant sex chromosomes. Plant, 2016, 243: 1083-1095
    [20] Hollister J D, Gaut B S. Epigenetic silencing of transposable elements: A trade-off between reduced transposition and deleterious effects on neighboring gene expression. Genome Research, 2009, 19(8): 1419-1428
    [21] 杨琳琳, 黄云彤, 付泽元, 徐启江. 园艺植物性别决定的表观遗传机制研究进展. 园艺学报, 2022, 49 (7): 1602-1610Yang L L, Huang Y T, Fu Z Y, Xu Q J. Research progress on the epigenetic mechanisms of sex determination in horticultural plants. Acta Horticulturae Sinica, 2022, 49 (7): 1602-1610
    [22] Matzke M A, Mosher R A. RNA-directed DNA methylation: An epigenetic pathway of increasing complexity. Nature Reviews Genetics, 2014, 15: 394-408
    [23] Herman J J, Sultan S E. DNA methylation mediates genetic variation for adaptive transgenerational plasticity. Proceedings of the Royal Society B: BioLogical Sciences, 2016, 283(1838): 988
    [24] Lai Y S, Zhang X, Zhang W, Shen D, Wang H, Xia Y, Qiu Y, Song J, Wang C, Li X. The association of changes in DNA methylation with temperature-dependent sex determination in cucumber. Journal of Experimental Botany, 2017, 68: 2899-2912
    [25] Antoine M, Christelle T, Adnane B, Mazen R, Ronan F, Halima M, Michel P, Catherine D,Abdelhafid B. A transposon-induced epigenetic change leads to sex determination in melon. Nature , 2009, 461(7267): 1135-1138
    [26] Akagi T, Henry I M, Kawai T, Comai L, Tao R. Epigenetic regulation of the sex determination gene MeGI in polyploid persimmon. The Plant Cell, 2016, 28: 2905-2915
    [27] 郭广平, 袁金玲, 吴晓丽, 顾小平. DNA甲基化在植物研究中的应用现状与前景. 植物遗传资源学报, 2011, 12(3):425-430Guo G P, Yuan J L, Wu X L, Gu X P. DNA methylation and its application in plant research. Journal of Plant Genetic Resources, 2011, 12(3):425-430
    [28] Fortes A M, Granell A, Pezzotti M, Bouzayen M. Molecular and metabolic mechanisms associated with fleshy fruit quality. Frontiers in Plant Science, 2017, 8: 1236
    [29] Zhou L L, Tang R K, Li X J, Tian S P, Li B B, Qin G Z. N6-methyladenosine RNA modification regulates strawberry fruit ripening in an ABA-dependent manner. Genome Biology, 2021,22:168
    [30] Li S,Chen K S,Donald G. Molecular and hormonal mechanisms regulating fleshy fruit ripening. Cells, 2021,10(5): 1136
    [31] Wei C Y, Liu H R , Cao X M , Zhang M L , Li X, Chen K S, Zhang B. Synthesis of flavour-related linalool is regulated by PpbHLH1 and associated with changes in DNA methylation during peach fruit ripening. Plant Biotechnology Journal, 2021,19(10): 2082-2096
    [32] Wei C Y, Li M T, Cao X M, Jin Z N, Zhang C, Xu M, Chen K S, Zhang B. Linalool synthesis related PpTPS1 and PpTPS3 are activated by transcription factor PpERF61 whose expression is associated with DNA methylation during peach fruit ripening. Plant Science, 2022,317:111200
    [33] Shan S S, Wang Z Q, Pu H L, Duan W H, Song H M, Li J K, Zhang Z K, Xu X B. DNA methylation mediated by melatonin was involved in ethylene signal transmission and ripening of tomato fruit. Scientia Horticulturae, 2022(291): 110566
    [34] Gao Y, Lin Y J , Xu M ,Bian H X , Zhang C ,Wang J Y , Wang H Q, Xu Y P , Niu Q F, Zuo J H, Fu D Q, Pan Y , Chen K S, Harry K, Lang Z B, Zhang B. The role and interaction between transcription factor NAC-NOR and DNA demethylase SlDML2 in the biosynthesis of tomato fruit flflavor volatiles. New Phytologist, 2022,23(19): 11191
    [35] Lang Z B, Wang Y H, Tang K, Tang D G, Datsenka T, Cheng J F, Zhang Y J, Handa A K, Zhu J K. Critical roles of DNA demethylation in the activation of ripening-induced genes and inhibition of ripening-repressed genes in tomato fruit. Proceedings of the National Academy of Sciences of the United States of America, 2017,114 (22): 4511-4519
    [36] Cheng J F, Niu Q F, Zhang B, Chen K S, Yang R H, Zhu J K, Zhang Y J, Lang Z B. Downregulation of RdDM during strawberry fruit ripening. Genome Biology, 2018,19(2): 212
    [37] Huang H, Liu R E, Niu Q F, Tang K, Zhang B, Zhang H, Chen K S, Zhu J K, Lang Z B. Global increase in DNA methylation during orange fruit development and ripening. Proceedings of the National Academy of Sciences, 2019,116 (4): 1430-1436
    [38] Shangguan L F, Fang X, Jia H F, Chen M X, Zhang K K, Fang J G. Characterization of DNA methylation variations during fruit development and ripening of Vitis vinifera (cv. 'Fujiminori'). Physiology and Molecular Biology of Plants, 2020,26(4): 617-637
    [39] 周陈平, 杨敏, 郭金菊, 邝瑞彬, 杨护, 黄炳雄, 魏岳荣. 番木瓜成熟过程中全基因组DNA甲基化和转录组变化分析. 园艺学报, 2022,49(3): 519-532Zhou C P, Yang M, Guo J J, Kuang R B, Yang H, Huang B X, Wei Y R. Dynamic changes in DNA methylome and transcriptome patterns during papaya fruit ripening. Acta Horticulturae Sinica, 2022,49 (3): 519-532
    [40] Xiao K, Chen J, He Q M, Wang Y X, Shen H L, Sun L. DNA methylation is involved in the regulation of pepper fruit ripening and interacts with phytohormones. Journal of Experimental Botany, 2020,71(6): 1928-1942
    [41] Liu C X, Li H, Lin J, Wang Y, Xu X Y, Cheng Z M , Chang Y H. Genome-wide characterization of DNA demethylase genes and their association with salt response in pyrus. Genes, 2018, 9(8):398
    [42] Virlouvet L, Fromm M. Physiological and transcriptional memory in guard cells during repetitive dehydration stress. New Phytologist, 2015, 205(2): 596-607
    [43] 韩雅楠, 赵犇鹏, 崔向军. 非生物胁迫蒙古黄芪基因组的MSAP分析. 基因组学与应用生物学, 2020, 39(7): 3119-3125Han Y N, Zhao B P, Cui X J. Genome MSAP analysis of astragalus mongholicus under abiotic stresses. Genomics and Applied Biology, 2020,39(7): 3119-3125
    [44] Moglia A, Gianoglio S, Acquadro A, Valentino D, Milani A M, Lanteri S, Comino C. Identification of DNA methyltransferases and demethylases in Solanum melongena L.,and their transcription dynamics during fruit development and after salt and drought stresses. PLoS ONE, 2019, 14(10): 223581
    [45] Labra M, Ghiana A ,Citterio S, Sgorbati S, Sala F, Vannini C, Ruffini-Castiglione M, Bracale M. Analysis of cytosine methylation pattern in response to water deficit in pea root. Plant Biology, 2002, 4: 694-699
    [46] 袁溢, 朱双, 方婷婷, 蒋金金, 王幼平. 人工合成甘蓝型油菜抗旱性及DNA甲基化水平分析. 作物学报, 2019,45(5): 693-704Yuan Y, Zhu S, Fang T T, Jiang J J, Wang Y P. Analysis of drought resistance and DNA methylation level of resynthesized Brassica napus. Acta Agronomica Sinica, 2019, 45(5): 693-704
    [47] Xu J D, Zhou S S, Gong X Q. Single-Base methylome analysis reveals dynamic epigenomic differences associated with water eficit in apple. Plant Biotechnology Journal, 2018, 16(2): 672-687
    [48] 耿红凯,毕春竹,韦淋馨,宋振琪,李红卫.不同种源地沙枣幼苗对混合盐胁迫的生长及生理响应研究.北京林业大学学报,2021,43(10):9-17Geng H K,Bi C Z,Wei L X,Song Z Q ,Li H W. Effects of saltstress on the growth and physiological and biochemical characteristics of Elaeagnus angustifolia seedlings from different provenances. Journal of Beijing Forestry University,2021,43(10):9-17
    [49] Lopez S L, Calatayud N, Lopez-Galarza S. Uncovering salt tolerance mechanisms in pepper plants: A physiological and transcriptomi capproach. BMC Plant Biology, 2021,21: 169-176
    [50] 黄韫宇, 张海军, 邢燕霞, 齐艳, 孙倩倩, 周春蕾, 赵冰, 郭仰东. NaCl胁迫对黄瓜种子萌发的影响及DNA甲基化的MSAP分析. 中国农业科学, 2013,46(8): 1646-1656Huang Y Y, Zhang H J, Xing Y X, Qi Y, Sun Q Q, Zhou C L, Zhao B, Guo Y D. Effects of NaCl stress on seed germination and DNA methylation status detected by MSAP analysis in cucumber. Scientia Agricultura Sinica, 2013,46(8): 1646-1656
    [51] 杜驰, 张冀, 张丽丽, 张富春. 盐胁迫下盐穗木DNA甲基化程度与去甲基化酶基因(Ros1)表达的相关性研究. 新疆农业科学, 2017,54(5): 878-885Du C, Zhang J, Zhang L L, Zhang F C. Study on the correlation between the degree of DNA methylation and the expression of demethylase gene (Ros1) in Halostachys caspica under salt stress. Xinjiang Agricultural Sciences, 2017,54 (5): 878-885
    [52] Lawati A, Bahry A, Victor R, Lawati A, Yaish M W. Salt stress alters DNA methylation levels in alfalfa (Medicago spp). Genetics and Molecular Research: GMR, 2016,15(1): 8299
    [53] Kovi M R, Sandve S R, Fjellheim S, Larsen A, Rudi H, Asp T, Kent M P, Rognli O A. Population structure, genetic variation and linkage disequilibrium in perennial ryegrass populations divergently selected for freezing tolerance. Frontiers in Plant Science, 2015,6: 929
    [54] 晁秋杰, 刘晓, 韩磊, 马晨晨, 高荣荣, 陈颖, 施江, 熊雨婕, 薛涛, 薛建平. 高温胁迫诱导半夏基因组甲基化的变异分析. 中国中药杂志, 2020,45(2): 341-346Chao Q J, Liu X, Han L, Ma C C, Gao R R, Chen Y, Shi J, Xiong Y J, Xue T, Xue J P. Variation analysis of genomic methylation induced by high temperature stress in Pinellia ternata. Chinese Journal of Chinese Materia Medica, 2020,45(2): 341-346
    [55] 曾子入, 贺从安, 张小康, 骆海波, 张雪丽. 高温胁迫诱导萝卜基因组甲基化变异分析. 分子植物育种, 2018,16(7): 2094-2098Zeng Z R, He C A, Zhang X K, Luo H B, Zhang X L. Analysis of genome methylation mutation in radish (Raphanus sativus L.) induced by heat stress. Molecular Plant Breeding, 2018, 16(7): 2094-2098
    [56] 许会会, 刘维信, 孙艳, 林多. 5-氮杂胞苷对白菜幼苗DNA甲基化和耐热性的影响. 园艺学报, 2012,39(3): 567-573Xu H H, Liu W X, Sun Y, Lin D. The Effects of 5-azacytidine on DNA methylation and heat tolerance of seedlings of non-heading Chinese cabbage. Acta Horticulturae Sinica, 2012, 39(3): 567-573
    [57] 宋爽, 刘宇, 高琪, 赵爽, 王守现, 宋庆港. 高温胁迫下香菇基因组甲基化差异分析. 中国食用菌, 2019, 38(10): 9-11, 16Song S, Liu Y, Gao Q, Zhao S, Wang S X, Song Q G. Analysis of genomic DNA methylation of lentinula edodes under heat stress. Chinese Edible Fungi Association, 2019, 38(10): 9-11, 16
    [58] Lu J Y, Yu Y S, Xi Z, Meng C C, Ting W, Jie Z, Yi F X, Ji T, Yun C Y. ROS1 promotes low temperature induced anthocyanin accumulation in apple by demethylating the promoter of anthocyanin-associated genes. Horticulture Research, 2022, 9: 7-10
    [59] Gai S P, Zhang F, Zhang Y X, Zheng G S. Analysi of genomic DNA methylation during chilling induced endo-dormancy release by methylation sensitive amplified polymorphism (MSAP) technology in tree peony. Journal of Agricultural Biotechnology, 2012, 20(3): 261-267
    [60] Liu T K, Li Y, Duan W K, Huang F Y, Hou X L. Cold acclimation alters DNA methylation patterns and confers tolerance to heat and increases growth rate in Brassica rapa. Journal of Experimental Botany, 2017, 68(5):1213-1224
    [61] Regier N, Beauvais-Fluck R, Slaveykova V I, Cosio C. Elodea nuttallii exposure to mercury exposure under enhanced ultraviolet radiation: Effects on bioaccumulation, transcriptome, pigment content and oxidative stress. Aquatic Toxicology,2016, 180: 218-226
    [62] 杨金兰, 柳李旺, 龚义勤, 黄丹琼, 王峰, 何玲莉. 镉胁迫下萝卜基因组DNA甲基化敏感扩增多态性分析. 植物生理与分子生物学学报, 2007, 33(3): 219-226Yang J L, Liu L W, Gong Y Q, Huang D Q, Wang F, He L L. Analysis of DNA methylation sensitive amplified polymorphisms in radish genome under cadmium stress. Journal of Plant Physiology and Molecular Biology, 2007, 33(3): 219-226
    [63] 何玲莉, 沈虹, 王燕, 王娟娟, 龚义勤, 徐良, 柳李旺. 铅胁迫下萝卜基因组DNA甲基化分析. 核农学报, 2015, 29 (7): 1278-1284He L L, Shen H, Wang Y, Wang J J, Gong Y Q, Xu L, Liu L W. Analysis of genomic DNA methylation level in radish under lead stress. Journal of Nuclear Agricultural Sciences, 2015, 29(7): 1278-1284
    [64] Shi D L, Zhuang K, Xia Y, Zhu C H, Chen C, Hu Z B, Shen Z G. Hydrilla verticillata employs two different ways to affect DNA methylation under excess copper stress. Aquatic Toxicology, 2017, 10(7): 97-104
    [65] 叶锦培, 李晓丽, 唐世斌, 严壮洧, 陈仕香, 刘海梅, 黄爱萍. 铝处理对六堡茶苗抗性生理和DNA甲基化水平的影响. 山东农业科学, 2020, 52(4): 112-116Ye J P, Li X L, Tang S B, Yan Z Y, Chen S X, Liu H M, Huang A P. Effects of aluminum treatment on resistance physiology and DNA methylation level of Liubaotea seedlings. Shandong Agricultural Sciences, 2020, 52 (4): 112-116
    Related
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

Copy
Share
0
Article Metrics
  • Abstract:293
  • PDF: 1211
  • HTML: 106
  • Cited by: 0
History
  • Received:February 21,2023
  • Revised:March 13,2023
  • Adopted:
  • Online: August 30,2023
  • Published: August 30,2023
Article QR Code
You are the 650230th visitor 京ICP备09069690号-23
® 2025 All Rights Reserved
Supported by:Beijing E-Tiller Technology Development Co., Ltd.
Firefox, Chrome, IE10, IE11 are recommended. Other browsers are not recommended.