2025-5-22- 14
  • Home
  • About Journal
  • Editorial Board
  • Author
    Instruction
    Copyright Agreement
  • Ethcis Statement
  • Subscribe
  • Contact
  • 中文
Home > Archive>Volume 24, Issue 5, 2023 >1448-1460. DOI:10.13430/j.cnki.jpgr.20230224007 Online First
PDF HTML XML Export Cite reminder
Identification and Expression Analysis of Trihelix Transcription Factor Family in Quercus mongolica
DOI:
10.13430/j.cnki.jpgr.20230224007
CSTR:
Author:
  • MENG Xin

    MENG Xin

    College of Forestry Science, Agricultural University of Hebei/Hebei Key Laboratory of Tree Genetic Resources and Forest Protection, Baoding 071000
    Find this author on All Journals
    Find this author on BaiDu
    Search for this author on this site
  • WANG Shijie

    WANG Shijie

    College of Forestry Science, Agricultural University of Hebei/Hebei Key Laboratory of Tree Genetic Resources and Forest Protection, Baoding 071000
    Find this author on All Journals
    Find this author on BaiDu
    Search for this author on this site
  • JIANG Min

    JIANG Min

    College of Forestry Science, Agricultural University of Hebei/Hebei Key Laboratory of Tree Genetic Resources and Forest Protection, Baoding 071000
    Find this author on All Journals
    Find this author on BaiDu
    Search for this author on this site
  • LI Hongyan

    LI Hongyan

    College of Forestry Science, Agricultural University of Hebei/Hebei Key Laboratory of Tree Genetic Resources and Forest Protection, Baoding 071000
    Find this author on All Journals
    Find this author on BaiDu
    Search for this author on this site
  • WANG Jinmao

    WANG Jinmao

    College of Forestry Science, Agricultural University of Hebei/Hebei Key Laboratory of Tree Genetic Resources and Forest Protection, Baoding 071000
    Find this author on All Journals
    Find this author on BaiDu
    Search for this author on this site
  • YANG Minsheng

    YANG Minsheng

    College of Forestry Science, Agricultural University of Hebei/Hebei Key Laboratory of Tree Genetic Resources and Forest Protection, Baoding 071000
    Find this author on All Journals
    Find this author on BaiDu
    Search for this author on this site
Affiliation:

College of Forestry Science, Agricultural University of Hebei/Hebei Key Laboratory of Tree Genetic Resources and Forest Protection, Baoding 071000

Clc Number:

Fund Project:

Collection, Conservation and Genetic Evaluation of Quercus mongolica Germplasm Resources(KJZXSA202207)

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference [36]
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Quercus mongolica Fisch is a native species at the temperate zone of East Asia, and is highly valuable considering its application and economic potential. Trihelix transcription factors are related to plant light response, growth and development, and abiotic stress. In order to study the performance of Trihelix transcription factors in Quercus mongolica under different shading and water stress, 34 QmTHs (designated QmTH01 to QmTH34) were identified from the genome of Quercus mongolica by bioinformatics analysis. By clustering analysis with 29 Trihelix transcription factors identified in Arabidopsis thaliana, the Trihelix transcription factors can be divided into five subgroups including GT-1, GT-2, GT-γ, SH4 and SIP1. QmTHs were found on 10 chromosomes of Quercus mongolica, encoding for the putative proteins ranged from 189 to 897 aa, with isoelectric points ranging from 4.58 to 9.78. A total of 14 different cis-acting elements were identified in the promoters of QmTHs, in which the elements related to methyl jasmonate response, abscisic acid response and light response were often found. According to gene expression analysis under different shading and water stress, the transcripts of QmTH01, QmTH14, QmTH22, QmTH24 and QmTH33 were relatively high under high light intensity, and significantly down-regulated with the decrease of light intensity, indicating that these five genes were involved in the growth physiology of Quercus mongolica under high light response. The expressions of QmTH06, QmTH17 and QmTH24 were significantly up-regulated under watering treatments (April, May, June, July and August; once per month), indicating that these genes possibly mediated the response of Quercus mongolica to water stress.

    Key words:Quercus mongolica;Trihelix transcription factor;genome-wide identification;bioinformation analysis;expression analysis
    Reference
    [1] 孙媛姣,陆秀君,曾莞棋,雷鸣雷,李东升,万项成,解昀霏,张晓林.施肥对蒙古栎幼林生长及养分含量的影响.沈阳农业大学学报,2021,52(4): 409-418Sun Y J, Lu X J, Zeng W Q, Lei M L, Li D S, Wan X C, Xie Y F, Zhang X L. Effects of fertilization on growth and nutrient content of young Quercus mongolica forest. Journal of Shenyang Agricultural University,2021, 52 (4): 409-418
    [2] 马金山.辽西蒙古栎林的群落结构及自然演替分析.绿色科技,2017(7): 14-15Ma J S. Community structure and natural succession of Quercus mongolicus forest in western Liaoning. Green Technology,2017(7): 14-15
    [3] 王国宝,王勇,秦利.蒙古栎叶片的转录组测序及基因功能注释.蚕业科学,2020,46(5): 560-565Wang G B, Wang Y, Qin L. Transcriptome sequencing and gene function annotation of Quercus mongolica leaves. Science of Sericulture,2020,46(5): 560-565
    [4] Ai W F, Liu Y Q, Mei M, Zhang X L, Tan E G, Liu H Z, Han X Y, Zhan H, Lu X J.A chromosome-scale genome assembly of the Mongolian oak (Quercus mongolica).Molecular Ecology Resources,2022,22(6): 2396-2410
    [5] 任俊杰,原阳晨,周苗苗,庞久帅,许晨阳,赵津,李迎超.不同遮阴处理对蒙古栎幼苗生长的影响.安徽农业科学,2022,50(7): 107-109Ren J J, Yuan Y C, Zhou M M, Pang J S, Xu C Y, Zhao J, Li Y C. Effects of different shading treatments on seedling growth of Quercus mongolica. Anhui Agricultural Sciences,2022, 50 (7): 107-109
    [6] 薛思雷,王庆成,孙欣欣,张命军.遮荫对水曲柳和蒙古栎光合、生长和生物量分配的影响.植物研究,2012,32(3): 354-359Xue S L, Wang Q C, Sun X X, Zhang M J. Effects of shading on photosynthesis, growth and biomass allocation of Manchuria Fraxinus and Quercus mongolica . Plant Research,2012, 32 (3): 354-359
    [7] 陈婕.光照条件对蒙古栎幼苗光合生理特性和生长特性的影响.哈尔滨:东北林业大学,2008Chen J. Effects of light conditions on photosynthetic physiological characteristics and growth characteristics of Quercus mongolica seedlings. Harbin: Northeast Forestry University,2008
    [8] Jiang M, Li X M, Yuan Y C, Zhang G W, Pang J S, Ren J J, Wang J M, Yang M S. Integrated physiological and transcriptomic analyses reveal the molecular mechanism behind the response to cultivation in Quercus mongolica . Frontiers in Plant Science, 2022, 13 : 947696-947696
    [9] 罗军玲, 赵娜, 卢长明.植物Trihelix转录因子家族研究进展.遗传, 2012, 34(12):1551-1560Luo J L, Zhao N, Lu C M. Advances in the transcription factors family of plant Trihelix. Heredity,2012,34(12): 1551-1560
    [10] 于冰,陈孟迪,王宇光.植物三螺旋Trihelix转录因子家族与环境相互作用的研究进展.植物遗传资源学报,2019,20(5):1134-1140Yu B, Chen M D, Wang Y G. Research progress on the interaction between the transcription factor family of plant Trihelix and environment. Journal of Plant Genetic Resources,2019, 20 (5): 1134-1140
    [11] 李纷芬. Trihelix转录因子SlPTL调控番茄生长发育和非生物胁迫的功能鉴定.重庆:重庆大学,2018Li F F. Function identification of Trihelix transcription factor SlPTL in regulating growth and development and abiotic stress in tomato. Chongqing: Chongqing University,2018
    [12] 肖杰.小麦Trihelix基因家族鉴定、表达分析及TaGT-75基因的功能研究.武汉:华中科技大学,2020Xiao J. Identification, expression analysis of Trihelix gene family and functional study of TaGT-75 gene in wheat. Wuhan: Huazhong University of Science and Technology,2020
    [13] Yang W Z, Hu J Y, Jyoti R B, Aruna K, Yuan Y P, Zhai Y H, Xu Y F, Xie L H, Zhang Y L, Zhang Q Y, Niu L X. A tree peony trihelix transcription factor PrASIL1 represses seed oil accumulation. Frontiers in Plant Science,2021,12: 796181
    [14] O'Brien M, Kaplan L, Quon T, Sappl P G, Smyth D R. PETAL LOSS, a trihelix transcription factor that represses growth in Arabidopsis thaliana, binds the energy-sensing SnRK1 kinase AKIN10.Journal of Experimental Botany,2015,66(9): 2475-2485
    [15] Kaplan-Levy R N, Brewer P B, Quon, T, Smyth D R. The trihelix family of transcription factors-light, stress and development. Trends in Plant Science,2012,17(3): 163-171
    [16] 向小雪,娄红梅,杨庆玲.Trihelix转录因子家族研究进展.安徽农业科学,2022,50(6):7-11Xiang X X, Lou H M, Yang Q L. Research progress of Trihelix transcription factor family. Journal of Anhui Agricultural Sciences,2022, 50 (6): 7-11
    [17] 王萍,卢世雄,梁国平,马宗桓,李文芳,毛娟,陈佰鸿.苹果Trihelix转录因子家族生物信息学鉴定与基因表达分析.园艺学报,2019,46(11): 2082-2098Wang P, Lu S X, Liang G P, Ma Z H, Li W F, Mao J, Chen B H. Bioinformatics identification and gene expression analysis of apple Trihelix transcription factor family. Journal of Horticulture, 2019, 46 (11): 2082-2098
    [18] 李栋成,李魁印,韦兴启,段丽丽,莫泽君,刘仁祥.烟草Trihelix转录因子家族鉴定及表达分析.亚热带植物科学,2022,51(1): 1-12Li D C, Li K Y, Wei X Q, Duan L L, Mo Z J, Liu R X. Identification and expression analysis of tobacco Trihelix transcription factor family. Subtropical Plant Science, 2022, 51 (1): 1-12
    [19] 韩文龙,朱振,李君茹,陈天哲,李国辉,苏雪强,金青,程曦,蔡永萍.梨Trihelix转录因子家族成员鉴定及表达分析.园艺学报,2021,48(3): 439-455Han W L, Zhu Z, Li J R, Chen T Z, Li G H, Su X Q, Jin Q, Cheng X, Cai Y P. Identification and expression analysis of pear Trihelix transcription factor family members. Journal of Horticulture, 2021, 48 (3): 439-455
    [20] Liu W, Zhang Y, Li W, Lin Y H, Wang C J, Xu R, Zhang L F. Genome-wide characterization and expression analysis of soybean trihelix gene family. Peer J, 2020, 8:e8753
    [21] 郭晋艳,郑晓瑜,邹翠霞,李秋莉.植物非生物胁迫诱导启动子顺式元件及转录因子研究进展.生物技术通报,2011(4): 16-20,30Guo J Y, Zheng X Y, Zou C X, Li Q L. Research progress in cis elements and transcription factors of plant abiotic stress-induced promoters. Biotechnology Bulletin, 2011 (4): 16-20, 30
    [22] Li K Y, Duan L L, Zhang Y B, Shi M X, Chen S S, Yang M F, Ding Y Q, Peng Y S, Dong Y B, Yang H, Li Z H, Zhang L Y, Fan Y, Ren M J. Genome-wide identification and expression profile analysis of trihelix transcription factor family genes in response to abiotic stress in sorghum [Sorghum bicolor (L.) Moench].BMC Genomics,2021,22: 1-17
    [23] 卢世雄. 葡萄Trihelix转录因子家族鉴定及VvTrihelix5响应盐胁迫功能研究.兰州:甘肃农业大学,2021Lu S X. Identification of grape Trihelix transcription factor family and study on VvTrihelix5 response to salt stress. Lanzhou: Gansu Agricultural University, 2021
    [24] Tong Y , Huang H , Wang Y H. Genome-wide analysis of the Trihelix gene family and their response to cold stress in Dendrobium officinale. Sustainability, 2021, 13(5): 2826-2826
    [25] 郑玲,李梦丹.甜瓜Trihelix转录因子的鉴定与生物信息学分析.江苏农业科学,2022,50(16):44-49Zheng L, Li M D. Identification and bioinformatics analysis of melon Trihelix transcription factor. Jiangsu Agricultural Science, 2022, 50 (16): 44-49
    [26] Li K, Fan Y, Zhou G, Liu X J, Chen S S, Chang X C, Wu W Q, Duan L L, Yao M X, Wang R, Wang Z L, Yang M F, Ding Y Q, Ren M J, Fan Y, Zhang L Y. Genome-wide identification, phylogenetic analysis, and expression profiles of trihelix transcription factor family genes in quinoa (Chenopodium quinoa Willd.) under abiotic stress conditions. BMC Genomics,2022,23(1): 1-19
    [27] Nagano Y, Inaba T, Furuhashi H, Sasaki Y. Trihelix DNA-binding protein with specificities for two distinct cis-elements: Both important for light down-regulated and dark-inducible gene expression in higher plants. Journal of Biological Chemistry, 2001, 276(25):22238-22243
    [28] 卢世雄,王萍,何红红,梁国平,马宗桓,乔亚丽,吴玉霞,陈佰鸿,毛娟.葡萄Trihelix转录因子家族生物信息及其基因表达分析.园艺学报,2019,46(7): 1257-1269Lu S X, Wang P, He H H, Liang G P, Ma Z H, Qiao Y L, Wu Y X, Chen B H, Mao J. Bioinformation and gene expression analysis of grape Trihelix transcription factor family. Journal of Horticulture, 2019, 46 (7): 1257-1269
    [29] Wang Z C, Liu Q G, Wang H Z, Zhang H Z, Xu X M, Li C H, Yang C P. Comprehensive analysis of trihelix genes and their expression under biotic and abiotic stresses in Populus trichocarpa. Scientific Reports,2016,6: 36274
    [30] 徐红云.拟南芥Trihelix转录因子AST1调控植物抗旱、耐盐的机制研究.哈尔滨:东北林业大学,2017Xu H Y. Study on the mechanism of Arabidopsis Trihelix transcription factor AST1 regulating plant drought resistance and salt tolerance. Harbin: Northeast Forestry University, 2017
    [31] 李东胜,白庆红,李永杰,许中旗,于海涛.光照条件对蒙古栎幼苗生长特性和光合特征的影响.生态学杂志,2017,36(10): 2744-2750Li D S, Bai Q H, Li Y J, Xu Z Q, Yu H T. Effects of light conditions on growth characteristics and photosynthetic characteristics of Quercus mongolica seedlings. Journal of Ecology, 2017, 36 (10): 2744-2750
    [32] Beon M S, Bartsch N. Early seedling growth of pine (Pinus densiflora) and oaks (Quercus serrata, Q. mongolica, Q. variabilis) in response to light intensity and soil moisture.Vegetatio,2003,167: 97-105
    [33] 许中旗,黄选瑞,徐成立,许晴,纪晓林.光照条件对蒙古栎幼苗生长及形态特征的影响.生态学报,2009,29(3): 1121-1128Xu Z Q, Huang X R, Xu C L, Xu Q, Ji X L. Effects of light conditions on the growth and morphological characteristics of Quercus mongolica seedlings. Journal of Ecology, 2009, 29 (3): 1121-1128
    [34] 龚磊.维管束植物气孔对脱落酸和光环境的响应.兰州:兰州大学,2021Gong L. Response of vascular plant stomata to abscisic acid and light environment. Lanzhou: Lanzhou University, 2021
    [35] Lyu S N, Wang X C, Zhang Y D, Li Z S. Different responses of Korean pine (Pinus koraiensis) and Mongolia oak (Quercus mongolica) growth to recent climate warming in northeast China. Dendrochronologia,2017,45(1): 113-122
    [36] 李彦杰,杨俊年,刘仁华,周大祥,甘丽萍,吴应梅.水淹胁迫下三峡库区消落带适生狗牙根转录因子的转录组分析.西南农业学报,2018,31(2): 265-269Li Y J, Yang J N, Liu R H, Zhou D X, Gan L P, Wu Y M. Transcriptome analysis of the transcription factors of bermudagrass suitable for growth in the fluctuating zone of the Three Gorges reservoir area under flooding stress. Southwest Agricultural Journal, 2018, 31 (2): 265-269
    Related
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

Copy
Share
0
Article Metrics
  • Abstract:247
  • PDF: 1195
  • HTML: 125
  • Cited by: 0
History
  • Received:February 24,2023
  • Revised:March 23,2023
  • Adopted:
  • Online: August 30,2023
  • Published: August 30,2023
Article QR Code
You are the 650095th visitor 京ICP备09069690号-23
® 2025 All Rights Reserved
Supported by:Beijing E-Tiller Technology Development Co., Ltd.
Firefox, Chrome, IE10, IE11 are recommended. Other browsers are not recommended.