Abstract:Cineraria (Pericallis hybrida) is an ornamental plant with multiple anthocyanin metabolic pathways and has varieties showing rare flower color phenotypes such as blue and bicolor. Elucidating the molecular mechanisms underlying the formation of these flower colors can provide valuable genetic resources in breeding of ornamental plants, particularly for the development of new blue flower varieties. Based on research experiences on cineraria, the authors summarized the research progress in the past 20 years on the unique anthocyanin structure, the regulatory pathways of anthocyanin biosynthesis, and the technical approaches used in flower color research. This review mainly introduces: (1) The pigment composition of different cineraria varieties and the polyacylation structure in blue varieties; (2) The genes involved in anthocyanin metabolism pathways such as polyacylation and acylation, and the function of transcription factors such as MYB and MADS-box in regulating flower color and spot formation; (3) The efficient genetic transformation system and viral-induced gene silencing system relevant to flower color research in cineraria, as well as progress in these areas. This article would like to provide references for future research on the flower color and molecular breeding of cineraria and other ornamental plants.