2025-6-9- 2
  • Home
  • About Journal
  • Editorial Board
  • Author
    Instruction
    Copyright Agreement
  • Ethcis Statement
  • Subscribe
  • Contact
  • 中文
Home > Archive>Volume 25, Issue 5, 2024 >695-703. DOI:10.13430/j.cnki.jpgr.20230925001 Online First
PDF HTML XML Export Cite reminder
Molecular Mechanisms of Flower Color Formation in Pericallis hybrida
DOI:
10.13430/j.cnki.jpgr.20230925001
CSTR:
Author:
  • CUI Yumeng

    CUI Yumeng

    College of Landscape Architecture,Beijing Forestry University/Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding/National Engineering Research Center for Floriculture,Beijing 100083
    Find this author on All Journals
    Find this author on BaiDu
    Search for this author on this site
  • HUANG He

    HUANG He

    College of Landscape Architecture,Beijing Forestry University/Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding/National Engineering Research Center for Floriculture,Beijing 100083
    Find this author on All Journals
    Find this author on BaiDu
    Search for this author on this site
  • DAI Silan

    DAI Silan

    College of Landscape Architecture,Beijing Forestry University/Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding/National Engineering Research Center for Floriculture,Beijing 100083
    Find this author on All Journals
    Find this author on BaiDu
    Search for this author on this site
Affiliation:

College of Landscape Architecture,Beijing Forestry University/Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding/National Engineering Research Center for Floriculture,Beijing 100083

Clc Number:

Fund Project:

Foundation project: General Program of National Natural Science Foundation of China(32071826,32171849)

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference [50]
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Cineraria (Pericallis hybrida) is an ornamental plant with multiple anthocyanin metabolic pathways and has varieties showing rare flower color phenotypes such as blue and bicolor. Elucidating the molecular mechanisms underlying the formation of these flower colors can provide valuable genetic resources in breeding of ornamental plants, particularly for the development of new blue flower varieties. Based on research experiences on cineraria, the authors summarized the research progress in the past 20 years on the unique anthocyanin structure, the regulatory pathways of anthocyanin biosynthesis, and the technical approaches used in flower color research. This review mainly introduces: (1) The pigment composition of different cineraria varieties and the polyacylation structure in blue varieties; (2) The genes involved in anthocyanin metabolism pathways such as polyacylation and acylation, and the function of transcription factors such as MYB and MADS-box in regulating flower color and spot formation; (3) The efficient genetic transformation system and viral-induced gene silencing system relevant to flower color research in cineraria, as well as progress in these areas. This article would like to provide references for future research on the flower color and molecular breeding of cineraria and other ornamental plants.

    Key words:cineraria;flower color;anthocyanin;flavonoid biosynthesis and regulation
    Reference
    [1] Dansereau P. Etudes Macaronesiennes I: Geographie des Crypto-games vasculaires. Agronomica Lusitanica, 1961, 23: 151-181
    [2] Suda J, Kyncl T, Freiová R. Nuclear DNA amounts in Macaronesian angiosperms. Annals of Botany, 2003, 92(1): 153-164
    [3] 裴红美, 韩科厅, 胡可, 孙秋玲, 戴思兰.瓜叶菊‘小丑’系列品种再生体系的研究. 北京林业大学学报, 2011, 33(1): 108-114Pei H M, Han K T, Hu K, Sun Q L, Dai S L. Plant regeneration of five color series of Senecio cruentus ‘Jester’. Journal of Beijing Forestry University, 2011, 33(1): 108-114
    [4] 罗怡柳. 瓜叶菊舌状花上不同着色区域基因表达模式分析. 北京: 北京林业大学, 2018Luo Y L. Gene expression pattern analysis in different colored regions of cineraria (Senecio cruentus). Beijing: Beijing Forestry University, 2018
    [5] 李亚军.蓝色瓜叶菊聚酰化花青素生物合成相关基因分离和功能分析. 北京: 北京林业大学, 2020Li Y J. Isolation and functional analysis of genes involved in polyacylated anthocyanin biosynthesis in blue Senecio cruentus. Beijing: Beijing Forestry University, 2020
    [6] 任江珊. ‘完美’蓝色瓜叶菊花青素聚酰化修饰关键基因的功能分析. 北京: 北京林业大学, 2023Ren J S. Functional analysis of key genes related to polyacylated anthocyanin biosynthesis in blue Senecio cruentus ‘Perfect’. Beijing: Beijing Forestry University, 2023
    [7] 孙卫, 李崇晖, 王亮生, 戴思兰, 徐彦军. 花青苷成分对瓜叶菊花色的影响. 园艺学报, 2009, 36(12): 1775-1782Sun W, Li C H, Wang L S, Dai S L, Xu Y J. Anthocyanins present in flowers of Senecio cruentus with different colors. Acta Horticulturae Sinica, 2009, 36(12): 1775-1782
    [8] 王璐. 瓜叶菊花青素苷合成分支途径的调控机制. 北京: 北京林业大学, 2015Wang L. Regulation mechanism of anthocyanin biosynthesis branch pathways in Senecio cruentus. Beijing: Beijing Forestry University, 2015
    [9] 孙翊.瓜叶菊PCFH基因对花青素苷合成及花色的影响. 北京: 北京林业大学, 2011Sun Y. Anthocyanin biosynthese and flower coloration controlled by cineraria PCFH gene. Beijing: Beijing Forestry University, 2011
    [10] Qi F T, Liu Y T, Luo Y L, Cui Y M, Lu C F, Li H, Huang H, Dai S L. Functional analysis of the ScAG and ScAGL11 MADS-box transcription factors for anthocyanin biosynthesis and bicolour pattern formation in Senecio cruentus ray florets. Horticulture Research, 2022, 9:uhac071
    [11] Jin X H, Huang H, Wang L, Sun Y, Dai S L. Transcriptomics and metabolite analysis reveals the molecular mechanism of anthocyanin biosynthesis branch pathway in different Senecio cruentus cultivars. Frontiers in Plant Science, 2016, 7:1307
    [12] 徐清燏, 戴思兰. 蓝色花卉分子育种. 分子植物育种, 2004, 2(1): 92-98Xu Q J, Dai S L. Blue flowers' molecular breeding. Molecular Plant Breeding, 2004, 2(1): 92-98
    [13] Katsumoto Y, Fukuchi-mizutani M, Fukui Y, Brugliera F, Holton, T, Karan M, Nakamura N, Yonekura-Sakakibara K, Togami J, Pigeaire A, Tao G Q, Nehra N, Lu C Y, Dyson B, Tsuda S, Ashik T, Kusumi T, Mason J, Tanaka Y. Engineering of the rose flavonoid biosynthetic pathway successfully generated blue-hued flowers accumulating delphinidin. Plant and Cell Physiology, 2007, 48(11): 1589
    [14] Noda N. Recent advances in the research and development of blue ?owers. Breeding Science, 2018,68:79-87
    [15] Shiono M, Matsugaki N, Takeda K. Structure of the blue cornflower pigment. Nature, 2005,436(11): 791
    [16] Yoshida K, Kondo T, Okazaki Y, Katou K. Cause of blue petal colour. Nature, 1995, 373: 291
    [17] Lu C F, Li Y J, Cui Y M, Ren J S, Qi F T, Qu J P, Huang H, Dai S L. Isolation and functional analysis of genes involved in polyacylated anthocyanin biosynthesis in blue Senecio cruentus. Frontiers in Plant Science, 2021, 12: 640746
    [18] Tanaka Y, Brugliera F, Chandler S. Recent progress of flower colour modification by biotechnology. International Journal of Molecular Sciences, 2009, 10: 5350-5369
    [19] Matsuba Y, Nobuhiro S, Masayuki T, Masachika O, Yutaka A, Emi O, Haruka N, Hisakage F, Makoto T, Mikako S. A novel glucosylation reaction on anthocyanin catalyzed by acyl-glucose-dependent glucosyltransferase in the petals of carnation and delphinium. The Plant Cell, 2010, 22(10): 3374-3389
    [20] Suzuki H, Sawada S Y, Yonekura-Sakakibara K, Nakayama T, Yamaguchi M A, Nishino T. Identification of a cDNA encoding malonyl-Coenzyme A: Anthocyanidin 3-O-glucoside 6'-O-malonyltransferase from Cineraria (Senecio cruentus) flowers. Plant Biotechnology, 2003, 20(3): 229-234
    [21] 温佳辛, 王超林, 冯慧, 李珊珊, 王亮生, 武荣花, 赵世伟. 月季花色研究进展. 园艺学报, 2021, 48(10): 2044-2056Wen J X, Wang C L, Feng H, Li S S, Wang L S, Wu R H, Zhao S W. Research progress on flower color of rose. Acta Horticulturae Sinica, 2021, 48(10): 2044-2056
    [22] 韩科厅, 赵莉, 唐杏姣, 胡可, 戴思兰.菊花花青素苷合成关键基因表达与花色表型的关系. 园艺学报, 2012, 39(3): 516-524Han K T, Zhao L, Tang X J, Hu K, Dai S L. The relationship between the expression of key genes in anthocyaninesis and the color of Chrvsanthemum. Acta Horticulturae, 2012, 39(3): 516-524
    [23] 孟丽, 戴思兰.瓜叶菊F3'5'H基因cDNA的克隆、序列分析及其原核表达. 分子植物育种, 2005, 3(6): 28-34Meng L, Dai S L. Cloning, sequencing and prokaryotic expression of F3'5'H cDNA from Pericallis cruentia (L.) Herit. Molecular Plant Breeding, 2005, 3(6): 28-34
    [24] Huang H, Han K T, Xiang Q Y, Dai S L. Flower colour modification of chrysanthemum by suppression of F3'H and overexpression of the exogenous Senecio cruentus F3'5'H gene. PLoS ONE, 2013, 8(11):e74395
    [25] 胡可, 孟丽, 韩科厅, 孙翊, 戴思兰. 瓜叶菊花青素合成关键结构基因的分离及表达分析. 园艺学报, 2009, 36(7): 1013-1022Hu K, Meng L, Han K T, Sun Y, Dai S L. Isolation and expression analysis of key genes involved in anthocyanin biosynthesis of cineraria. Acta Horticulturae, 2009, 36(7): 1013-1022
    [26] Seitz C, Eder C, Deiml B, Kellner S, Martens S, Cloning Forkmann G., functional identification and sequence analysis of flavonoid 3'-hydroxylase and flavonoid 3',5'-hydroxylase cdnas reveals independent evolution of flavonoid 3',5'-hydroxylase in the Asteraceae family. Plant Molecular Biology, 2006, 61(3): 365-381
    [27] Noda N, Aida R, Kishimoto S, Ishiguro K, Fukuchi-Mizutani M, Tanaka Y, Ohmiya A. Genetic engineering of novel bluer-colored chrysanthemums produced by accumulation of delphinidin-based anthocyanins. Plant and Cell Physiology, 2013, 54(10): 1684-1695
    [28] Yonekura-Sakakibara K, Hanada K. An evolutionary view of functional diversity in family 1 glycosyltransferases. Plant Journal, 2011, 66(1): 182-193
    [29] Fukuchi-Mizutani M, Okuhara H, Fukui Y, Nakao M, Katsumoto Y, Yonekura-Sakakibara K, Kusumi T, Tanaka H Y. Biochemical and molecular characterization of a novel UDP-glucose: Anthocyanin 3'-O-glucosyltransferase, a key enzyme for blue anthocyanin biosynthesis, from gentian. Plant Physiology, 2003, 132(3): 1652-1663
    [30] Nishizaki Y, Yasunaga M, Okamoto E, Okamoto M, Hirose Y, Yamaguchi M, Ozeki Y, Sasaki N. p-hydroxybenzoyl-glucose is a zwitter donor for the biosynthesis of 7-polyacylated anthocyanin in delphinium. The Plant Cell, 2013, 25(10): 4150-4165
    [31] Zhao J, Dixon R A. The 'ins' and 'outs' of flavonoid transport. Trends in Plant Science, 2010, 15(2): 72-80
    [32] Rea Philip A. Plant ATP-binding cassette transporters. Annual Review of Plant Biology, 2007, 58(1): 347-375
    [33] Cao Y W, Xu L F, Xu H, Yang P P, He G R, Tang Y C, Qi X Y, Song M M, Ming J. LhGST is an anthocyanin-related glutathione S-transferase gene in Asiatic hybrid lilies (Lilium spp.). Plant Cell Reports, 2020, 40(1): 85-95
    [34] Han L L, Zhou L, Zou H Z, Yuan M, Wang Y. PsGSTF3, an anthocyanin-related glutathione s-transferase gene, is essential for petal coloration in tree peony. International Journal of Molecular Sciences, 2022, 23(2): 1423
    [35] 金雪花, 洪艳, 黄河, 戴思兰, 朱嫄. 瓜叶菊谷胱甘肽转移酶基因GST的分离及表达分析. 园艺学报, 2013, 40(6): 1129-1138Jin X H, Hong Y, Huang H, Dai S L, Zhu Y. Isolation and expression analysis of GST gene encoding glutathione S-transferase from Senecio cruentus. Acta Horticulturae, 2013, 40(6): 1129-1138
    [36] Cui Y M, Fan J W, Lu C F, Ren J S, Qi F T, Huang H, Dai S L. ScGST3 and multiple R2R3-MYB transcription factors function in anthocyanin accumulation in Senecio cruentus. Plant Science, 2021, 313: 111094
    [37] Ma D W, Reichelt M, Yoshida K, Gershenzon J, Constabel C P. Two R2R3-MYB proteins are broad repressors of flavonoid and phenylpropanoid metabolism in poplar. The Plant Journal, 2018, 96(5): 949-965
    [38] Nakatsuka T, Haruta K S, Pitaksutheepong C, Abe Y, Kakizaki Y, Yamamoto K, Shimada N, Yamamura S, Nishihara M. Identification and characterization of R2R3-MYB and bHLH transcription factors regulating anthocyanin biosynthesis in gentian flowers. Plant and Cell Physiology, 2008, 49(12): 1818-1829
    [39] Chen K L, Du L J, Liu H L, Liu Y L. A novel R2R3-MYB from grape hyacinth, MaMybA, which is different from MaAN2, confers intense and magenta anthocyanin pigmentation in tobacco. BMC Plant Biology, 2019, 19(1):390
    [40] Cui Y M, Fan J W, Liu F Y, Li H, Pu Y, Huang H, Dai S L. R2R3-MYB transcription factor PhMYB2 positively regulates anthocyanin biosynthesis in Pericallis hybrida. Scientia Horticulturae, 2023, 322: 112446
    [41] Feller A, Machemer K, Braun E L, Grotewold E. Evolutionary and comparative analysis of MYB and bHLH plant transcription factors. Plant Journal, 2011, 66(1): 94
    [42] Li Y J, Liu Y T, Qi F T, Deng C Y, Lu C F, Huang H, Dai S L. Establishment of virus-induced gene silencing system and functional analysis of ScbHLH17 in Senecio cruentus. Plant Physiology and Biochemistry, 2020, 147: 272-279
    [43] Davies K M, Albert N W, Schwinn K E. From landing lights to mimicry: The molecular regulation of flower colouration and mechanisms for pigmentation patterning. Functional Plant Biology, 2012, 39(8): 619-638
    [44] Yamagishi M. A novel R2R3-MYB transcription factor regulates light-mediated floral and vegetative anthocyanin pigmentation patterns in Lilium regale. Molecular Breeding, 2016, 36(1): 3
    [45] Su S H, Xiao W, Guo W X, Yao X R, Xiao J Q, Ye Z Q, Wang N, Jiao K Y, Lei M Q, Peng Q C, Hu X H, Huang X, Luo D. The CYCLOIDEA-RADIALIS module regulates petal shape and pigmentation, leading to bilateral corolla symmetry in Torenia fournieri (Linderniaceae). New Phytologist, 2017, 215(4): 1582-1593
    [46] 罗怡柳, 黄河, 连璐, 戴思兰.瓜叶菊舌状花再生体系的建立// 张启翔. 中国观赏园艺研究进展2017.北京: 中国林业出版社, 2017:243-250Luo Y L, Huang H, Lian L, Dai S L. The construction of regeneration system for the ray floret of Senecio cruentus//Zhang Q X. Advances in oramental horticulture of China 2017. Beijing: China Forestry Publishing House, 2017: 243-250
    [47] 刘钰婷, 黄河, 叶繁, 戴思兰.瓜叶菊下胚轴再生体系的建立// 张启翔. 中国观赏园艺研究进展2018. 北京: 中国林业出版社, 2018:493-501Liu Y T, Huang H, Ye Fan, Dai S L. The construction of regeneration system for hypocotyl of Senecio cruentus//Zhang Q X.Advances in Oramental Horticulture of China 2018. Beijing: China Forestry Publishing House, 2018:493-501
    [48] 张丽. 农杆菌介导的eGFP基因转化瓜叶菊技术体系研究. 长沙:湖南农业大学, 2020Zhang L. Research on Agrobacterium-mediated transformation technical system of eGFP Gene in Pericallis hybrida. Changsha: Hunan Agricultural University, 2020
    [49] 潘多, 张嵩玥, 刘芳伊, 田清尹, 杨秀莲, 王良桂, 岳远征. 病毒诱导的基因沉默技术用于植物色素代谢机制的研究进展. 生物工程学报, 2023, 39(7): 2579-2599Pan D, Zhang S Y, Liu F Y, Tian Q Y, Yang X L, Wang L G, Yue Y Z. Application of virus-induced gene silencing technology to investigate the phytochrome metabolism mechanism: A review. Chinese Journal of Biotechnology, 2023, 39(7): 2579-2599
    [50] 王金刚, 吕远达, 李声影, 杨涛, 白丁, 段然, 刘岩. 瓜叶菊Mlo基因的克隆、分析及VIGS载体构建. 东北农业大学学报, 2014, 45(5): 26-30Wang J G, Lv Y D, Li S Y, Yang T, Bai D, Duan R, Liu Y. Cloning and analysis of Mlo gene from Pericallis hybrida B. Nord. and VIGS vector construction. Journal of Northeast Agricultural University, 2014, 45(5): 26-30
    Related
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

Copy
Related Videos

Share
0
Article Metrics
  • Abstract:201
  • PDF: 401
  • HTML: 65
  • Cited by: 0
History
  • Received:September 25,2023
  • Revised:
  • Adopted:
  • Online: May 17,2024
  • Published: May 10,2024
Article QR Code
You are the 671860th visitor 京ICP备09069690号-23
® 2025 All Rights Reserved
Supported by:Beijing E-Tiller Technology Development Co., Ltd.
Firefox, Chrome, IE10, IE11 are recommended. Other browsers are not recommended.