2025-5-21- 11
  • Home
  • About Journal
  • Editorial Board
  • Author
    Instruction
    Copyright Agreement
  • Ethcis Statement
  • Subscribe
  • Contact
  • 中文
Home > Archive>Volume 25, Issue 3, 2024 >312-322. DOI:10.13430/j.cnki.jpgr.20231010001 Online First
PDF HTML XML Export Cite reminder
Application of CRISPR/Cas9 Technology in Tropical Crops Breeding
DOI:
10.13430/j.cnki.jpgr.20231010001
CSTR:
Author:
  • WANG Jingyi 1

    WANG Jingyi

    Key Laboratory of Tropical Crops Biology and Genetic Resources,Ministry of Agriculture and Rural Affairs, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences/ National Key Laboratory for Tropical Crop Breeding, Sanya Research Institute / Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Haikou 571101
    Find this author on All Journals
    Find this author on BaiDu
    Search for this author on this site
  • GAN Shanshan 1,2

    GAN Shanshan

    Key Laboratory of Tropical Crops Biology and Genetic Resources,Ministry of Agriculture and Rural Affairs, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences/ National Key Laboratory for Tropical Crop Breeding, Sanya Research Institute / Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Haikou 571101;College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430000
    Find this author on All Journals
    Find this author on BaiDu
    Search for this author on this site
  • JIA Caihong 1

    JIA Caihong

    Key Laboratory of Tropical Crops Biology and Genetic Resources,Ministry of Agriculture and Rural Affairs, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences/ National Key Laboratory for Tropical Crop Breeding, Sanya Research Institute / Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Haikou 571101
    Find this author on All Journals
    Find this author on BaiDu
    Search for this author on this site
  • LIU Juhua 1

    LIU Juhua

    Key Laboratory of Tropical Crops Biology and Genetic Resources,Ministry of Agriculture and Rural Affairs, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences/ National Key Laboratory for Tropical Crop Breeding, Sanya Research Institute / Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Haikou 571101
    Find this author on All Journals
    Find this author on BaiDu
    Search for this author on this site
Affiliation:

1.Key Laboratory of Tropical Crops Biology and Genetic Resources,Ministry of Agriculture and Rural Affairs, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences/ National Key Laboratory for Tropical Crop Breeding, Sanya Research Institute / Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Haikou 571101;2.College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430000

Clc Number:

Fund Project:

Foundation projects: Hainan Provincial Natural Science Foundation (321RC638); Chinese Academy of Tropical Agricultural Sciences for Science and Technology Innovation Team of National Tropical Agricultural Science Center (CATASCXTD202310); National Key Laboratory for Tropical Crop Breeding (NKLTCB202301); The Innovation Platform for Academicians of Hainan Province (YSPTZX202101); Earmarked Fund for Modern Agro-industry Technology Research System (CARS-31)

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference [74]
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Tropical crops, including banana, papaya, sugarcane, cassava, rubber tree, oil palm, etc, are of importance in Chinese agriculture, which not only provide raw materials for our daily life and industrial and agricultural production, but also contribute to the main agricultural output and economic growth in tropical and subtropical zones of China. There are many barriers in tropical crops in use of modern molecular breeding techniques, such as polyploidy, heterozygous, vegetative propagation, long juvenile phase and large size of plants, etc. The genetic improvement of tropical crops through conventional breeding is troublesome, time-consuming, low efficiency and less progress. The development of genome editing technologies has brought a new way in tropical crops breeding. CRISPR-Cas9 mediated genome editing has been widely used in plants, profited from its higher targeting efficiency, versatility and ease of usage. This approach has been applied in banana, cassava, rubber tree, and sugarcane. Here, we focus on the recent advances based on CRISPR/Cas9 methodologies, and summarize their application in tropical crops breeding, as well as propose future perspectives and challenges in improving tropical plants.

    Key words:tropical crops;genome editing;CRISPR/Cas9
    Reference
    [1] 郭晓强. CRISPR-Cas9技术发展史:25年的科学历程. 自然杂志,2016, 38 (4): 278-286Guo X Q. The invention of CRISPR-Cas9 technology: 25-years scientific journey. Chinese Journal of Nature, 2016, 38 (4): 278-286
    [2] Cong L, Ran F A, Cox D, Lin S, Barretto R, Habib B, Hsu P D, Wu X, Jiang W, Marraffini L A, Zhang F. Multiplex genome engineering using CRISPR/Cas systems. Science, 2013, 339 (6121): 819-823
    [3] Li J F, Norville J E, Aach J, McCormack M, Zhang D, Bush J, Church G M, Sheen J. Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nature Biotechnology, 2013, 31: 688-691
    [4] Nekrasov V, Staskawicz B, Weigel D, Jones JDG, Kamoun S. Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease. Nature Biotechnology, 2013, 31: 691-693
    [5] Shan Q, Wang Y, Li J, Zhang Y, Chen K, Liang Z, Liu J, Xi J J, Qiu J, Gao C. Targeted genome modification of crop plants using a CRISPR-Cas system. Nature Biotechnology, 2013, 31: 686-688
    [6] Zhang P. Tropical crops enter the era of genome editing. Tropical Plants, 2022, 1:10
    [7] 毛兴学, 郑晓钰, 孙炳蕊, 李晨, 陈文丰, 潘大建, 柳武革, 范芝兰, 王丰. 应用CRISPR/Cas9技术创制低直链淀粉含量水稻种质. 植物遗传资源学报, 2022, 23 (2): 583-591Mao X X, Zheng X Y, Sun B R, Li C, Chen W F, Pan D J, Liu W G, Fan Z L, Wang F. Creating novel rice germplasms with low amylose content by editing upstream sequence of Wx gene coding region via CRISPR/Cas9 technology. Journal of Plant Genetic Resources, 2022, 23 (2): 583-591
    [8] 王超凡, 张大健. 基因编辑技术在大豆种质资源研究中的利用. 植物遗传资源学报, 2020, 21 (1): 26-32Wang C F,Zhang D J. Application of gene editing in studies of soybean germplasm resource. Journal of Plant Genetic Resources, 2020, 21 (1): 26-32
    [9] 高谢旺, 谭安琪, 胡信畅, 祝孟洋, 阮颖, 刘春林. 利用CRISPR/Cas9技术创制高油酸甘蓝型油菜新种质. 植物遗传资源学报, 2020, 21 (4): 1002-1008Gao X W, Tan A Q, Hu X C, Zhu M Y, Ruan Y, Liu C L. Creation of new germplasm of high-oleic rapeseed using CRISPR/Cas9. Journal of Plant Genetic Resources, 2020, 21 (4): 1002-1008
    [10] 于美, 唐华丽, 叶兴国. 利用转基因技术和基因编辑技术改良小麦进展. 植物遗传资源学报, 2023, 24 (1): 102-116Yu M, Tang H L, Ye X G. Progresses on wheat improvement by using transgenic and genome editing technologies. Journal of Plant Genetic Resources, 2023, 24 (1): 102-116
    [11] Rees H A, Liu D R. Base editing: Precision chemistry on the genome and transcriptome of living cells. Nature Reviews Genetics, 2018, 19: 770-788
    [12] Anzalone A V, Randolph P B, Davis J R, Sousa A A, Koblan L W, Levy J M, Chen P J , Wilson C, Newby G A, Raguram A, Liu D R. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature, 2019, 576: 149-157
    [13] 赵无迪, 黄国斌, 朱向星, 毕延震, 唐冬生. 碱基编辑技术在猪遗传改良上的应用研究进展. 生物工程学, 2023, 39 (10): 3936-3947Zhao W D, Huang G B, Zhu X X, Bi Y Z, Tang D S. Application of single base editing technique in pig genetic improvement: A review. Chinese Journal of Biotechnology, 2023, 39 (10): 3936-3947
    [14] Liang Y, Xie J, Zhang Q, Wang X, Gou S, Lin L, Chen T, Ge W, Zhuang Z, Lian M, Chen F, Li N, Ouyang Z, Lai C, Liu X, Li L, Ye Y, Wu H, Wang K, Lai L. AGBE: A dual deaminase-mediated base editor by fusing CGBE with ABE for creating a saturated mutant population with multiple editing patterns. Nucleic Acids Research, 2022, 50: 5384-5399
    [15] Zong Y, Wang Y, Li C, Zhang R, Chen K, Ran Y, Qiu J, Wang D, Gao C. Precise base editing in rice, wheat and maize with a Cas9-cytidine deaminase fusion. Nature Biotechnology, 2017, 35: 438-440
    [16] Xu W, Zhang C, Yang Y, Zhao S, Kang G, He X, Song J, Yang J. Versatile nucleotides substitution in plant using an improved system, prime editing. Molecular Plant, 2020, 13: 675-678
    [17] 胡春华, 邓贵明, 孙晓玄, 左存武, 李春雨, 邝瑞彬, 杨乔松, 易干军. 香蕉CRISPR/Cas9基因编辑技术体系的建立. 中国农业科学, 2017, 50 (7): 1294-1301Hu C H, Deng G M, Sun X X, Zuo C W, Li C Y, Kuang R B, Yang Q S, Yi G J. Establishment of an efficient CRISPR/Cas9-mediated gene editing system in banana. Scientia Agricultura Sinica, 2017, 50 (7): 1294-1301
    [18] Kaur N, Alok A, Shivani, Kaur N, Tiwari S. CRISPR/Cas9-mediated efficient editing in phytoene desaturase (PDS) demonstrates precise manipulation in banana cv. Rasthali genome. Functional Integrative Genomics, 2018, 18 (1): 89-99
    [19] Naim F, Dugdale B, Kleidon J, Brinin A, Shand K, Waterhouse P, Dale J. Gene editing the phytoene desaturase alleles of Cavendish banana using CRISPR/Cas9. Transgenic Research, 2018, 27 (5): 451-460
    [20] Ntui V O, Tripathi J N, Tripathi L. Robust CRISPR/Cas9 mediated genome editing tool for banana and plantain (Musa spp.). Current Plant Biology, 2020, 21:100128
    [21] Wu S, Zhu H, Liu J, Yang Q, Shao X, Bi F, Hu C, Hou H, Chen K, Yi G. Establishment of a PEG-mediated protoplast transformation system based on DNA and CRISPR/Cas9 ribonucleoprotein complexes for banana. BMC Plant Biology, 2020, 20 (1): 425
    [22] Zhang S, Wu S, Hu C, Yang Q, Dong T, Sheng Ou, Deng G, He W, Dou T, Li C, Sun C, Yi G, Bi F. Increased mutation efficiency of CRISPR/Cas9 genome editing in banana by optimized construct. PeerJ, 2022, 10: e12664
    [23] Hu C, Liu F, Sheng O, Yang Q, Dou T, Dong T, Li C, Gao H, He W, Liu S, Deng G, Yi G, Bi F. Efficient and transgene-free genome editing in banana using a REG-2 promoter-driven gene-deletion system. Molecular Horticulture, 2023, 3: 16
    [24] Tripathi J N, Ntui V O, Ron M, Muiruri S K, Britt A, Tripathi L. CRISPR/Cas9 editing of endogenous banana streak virus in the B genome of Musa spp. overcomes a major challenge in banana breeding. Communication Biology, 2019, 2: 46
    [25] Tripathi J N, Ntui V O, Shah T, Tripathi L. CRISPR/Cas9 mediated editing of DMR6 Orthologue in banana (Musa spp.) confers enhanced resistance to bacterial disease. Plant Biotechnology Journal, 2021, 19 (7): 1291-1293
    [26] Maxmen A. CRISPR could save bananas from fungus. Nature, 2019, 574: 15
    [27] Kaur N, Alok A, Shivani, Kumar P, Kuar N, Awasthi P, Chaturvedi S, Pandey P, Pandey A, Pandey A K, Tiwari S. CRISPR/Cas9 directed editing of lycopene epsilon-cyclase modulates metabolic flux for β-carotene biosynthesis in banana fruit. Metabolic Engineering, 2020, 59: 76-86
    [28] Awasthi P, Khan S, Lakhani H, Chaturvedi S, Shivani, Kaur N, Singh J, Kesarwani A K, Tiwari S. Transgene-free genome editing supports the role of carotenoid cleavage dioxygenase 4 as a negative regulator of β-carotene in banana. Journal of Experimental Botany, 2022, 73 (11): 3401-3416
    [29] 孙晓玄.香蕉CRISPR/Cas9基因编辑技术体系的建立. 广州: 华南农业大学, 2017Sun X Y. Establishment of an efficient CRISPR/Cas9-mediated gene editing system in banana. Guangzhou: South China Agricultural University, 2017
    [30] Shao X, Wu S, Dou T, Zhu H, Yi G. Using CRISPR/Cas9 genome editing system to create MaGA20ox2 gene-modified semi-dwarf banana. Plant Biotechnology Journal, 2020, 18: 17-19
    [31] Hu C, Sheng O, Deng G, He W, Bi F. CRISPR/Cas9-mediated genome editing of MaACO1 (aminocyclopropane-1-carboxylate oxidase1) promotes the shelf life of banana fruit. Plant Biotechnology Journal, 2021, 19: 654-56
    [32] 魏岳荣,周陈平,邝瑞彬,杨护,黄炳雄,杨敏. 番木瓜均质胚性细胞悬浮系的建立和高效植株再生. 果树学报, 2023, 40 (2): 376-385Wei Y R, Zhou C P, Kuang R B, Yang H, Huang B X, Yang M. Development of embryogenic cell suspension cultures and efficient plant regeneration of Carica papaya L. Journal of Fruit Science, 2023, 40 (2): 376-385
    [33] Gonsalves D. Control of Papaya ringspot virus in papaya: A case study. Annual Review of Phytopathology, 1998, 36: 415-437
    [34] Ming R, Hou S, Feng Y, Yu Q, Dionne-Laporte A, Saw J H, Senin P, Wang W, Ly B V, Lewis K L T, Salzberg S L, Feng L, Jones M R, Skelton R, Murray J E, Chen C, Qian W, Shen J, Du P, Eustice M, Tong E, Tang H, Lyons E, Paull R E, Michael T P, Wall K, Rice D W, Albert H, Wang M L, Zhu Y J, Schatz M, Nagarajan N, Acob R A, Guan P, Blas A, Wai C M, Ackerman C M, Ren Y, Liu C, Wang J N, Wang J P, Na J, Shakirov E V, Haas B, Thimmapuram J, Nelson D, Wang X, Bowers J E, Gscjwend A R, Delcher A L, Singh R, Suzuki J, Tripathi S, Neupane K, Wei H, Irikura B, Paidi M, Jing N, Zhang W, Presting G, Wondsor A, Navajas-Pérez R, Torres M J, Feltus F A, Porter B, Li Y, Burroughs A M, Luo M, Christopher D A, Mount S M, Moore P H, Sugimura T, JIANG J, Schuler M A, Friedman V, Mitchell-Olds T, Shippen D S, de Pamphilis C W, Palmer J D, Freeling M, Paterson A H, Gonsalves D, Wang L, Alam M. The draft genome of the transgenic tropical fruit tree papaya (Carica papaya Linnaeus). Nature, 2008, 452: 991-996
    [35] Al-Shara B, Taha R M, Mohamad J, Elias H, Khan A. Somatic embryogenesis and plantlet regeneration in the Carica papaya L. cv. Eksotika. Plants, 2020, 9 (3): 360
    [36] 赵晓兵, 曾秋霞, 杨丽媛, 方寒梅, 左丽萍, 吴永旺, 岳晶晶.番木瓜胚性愈伤组织高效诱导与植株再生. 分子植物育种, 2022, 20 (8): 2713-2724Zhao X B, Zeng Q X, Yang L Y, Fang H M, Zuo L P, Wu Y W, Yue J J. Efficient induction of papaya embryogenic callus and plant regeneration. Molecular Plant Breeding, 2022, 20 (8): 2713-2724
    [37] 王绪朋, 赵辉, 贾瑞宗, 孔华, 郭运玲, 郭安平. 用Golden Gate法构建广谱抗番木瓜环斑病毒海南株系的CRISPR/FnCas9植物表达载体. 热带作物学报, 2018, 39 (5): 955-962Wang X P, Zhao H, Jia R Z, Kong H, Guo Y L, Guo A P. Construction of CRISPR/FnCas9 plant expression vectors with broad spectrum resistance to Hainan Papaya ringspot virus by Golden gate. Chinese Journal of Tropical Crops, 2018, 39 (5): 955-962
    [38] 龙欢, 赵辉, 王绪朋, 贾瑞宗, 贺萍萍, 孔华, 郭运玲, 郭安平. 基于CRISPR基因编辑系统抗番木瓜曲叶病毒的植物转化载体的构建. 热带作物学报, 2019, 40 (10): 2022-2028Long H, Zhao H, Wang X P, Jia R Z, He P P, Kong H, Guo Y L, Guo A P. Construction of CRISPR plant expression vectors resistance to papaya leaf curl virus. Chinese Journal of Tropical Crops, 2019, 40 (10): 2022-2028
    [39] Brewer S E, Chambers A H. CRISPR/Cas9-mediated genome editing of phytoene desaturase in Carica papaya L. The Journal of Horticultural Science and Biotechnology, 2022, 97: 580-592
    [40] Hoang T H T, Nguyen N H, Nguyen L T, Bui T P, Le N T, Dao N T, Monteiro M, Pham N B, Molnar A, Chu H H, Do P T. Developing a robust in vivo hairy root system for assessing transgene expression and genome editing efficiency in papaya. Plant Cell, Tissue and Organ Culture, 2023, 152: 661-667
    [41] 许孚,汪洲涛,路贵龙,阙友雄. 甘蔗遗传改良中的基因工程:适用、成就、局限和展望. 农业生物技术学报, 2022, 30 (3): 580-593Xu F, Wang Z T, Lu G L, Que Y X. Genetic engineering in sugarcane improvement: Adaptability, achievements, limitations and prospects. Journal of Agricultural Biotechnology, 2022, 30 (3): 580-593
    [42] Zhao Y, Karan R, Altpeter F. Error-free recombination in sugarcane mediated by only 30 nucleotides of homology and CRISPR/Cas9 induced DNA breaks or Cre-recombinase. Biotechnology Journal, 2021, 16 (6): e2000650
    [43] Eid A, Mohan C, Sanchez S, Wang D D, Altpeter F. Multiallelic, targeted mutagenesis of magnesium chelatase with CRISPR/Cas9 provides a rapidly scorable phenotype in highly polyploid sugarcane. Frontiers in Genome Editing, 2021, 3: 654996
    [44] Oz M T, Altpeter A, Karan R, Merotto A, Altpeter F. CRISPR/Cas9-mediated multi-allelic gene targeting in sugarcane confers herbicide tolerance. Frontiers in Genome Editing, 2021, 3: 673566
    [45] Odipio J, Alicai T, Ingelbrecht I, Nusinow D A, Bart R, Taylor N J. Efficient CRISPR/Cas9 genome editing of phytoene desaturase in cassava. Frontiers in Plant Science, 2017, 8: 1780
    [46] Gomez M A, Lin Z D, Moll T, Chauhan R D, Hayden L, Renninger K, Beyene G, Taylor N J, Carrington, J C, Staskawicz B J. Simultaneous CRISPR/Cas9-mediated editing of cassava eIF4E isoforms nCBP-1 and nCBP-2 reduces cassava brown streak disease symptom severity and incidence. Plant Biotechnology Journal, 2019, 17: 421-434
    [47] Mehta D, Stürchler A, Anjanappa R B, Zaidi S S, Hirsch-Hoffmann M, Gruissem W, Vanderschuren H. Linking CRISPR-Cas9 interference in cassava to the evolution of editing-resistant geminiviruses. Genome Biology, 2019, 20 (1): 80
    [48] 叶昕彤. 利用CRISPR/Cas9 靶向斯里兰卡木薯花叶病毒创制抗病木薯材料. 杭州: 浙江大学, 2021Ye X T. Generation of Sri Lankan cassava mosaic virus resistant cassava plants by CRISPR/Cas9-mediated genome targeting. Hangzhou:Zhejiang University, 2021
    [49] Veley K M, Okwuonu I, Jensen G, Yoder M, Taylor N J, Meyers B C, Bart R S. Gene tagging via CRISPR-mediated homology-directed repair in cassava. Genes,Genomes,Genetics, 2021, 11 (4): jkab028
    [50] Wang Y, Geng M, Pan R, Zhang T, Zhen X, Che Y, Li R, Liu J, Chen Y, Guo J. Engineering bacterial blight-resistant plants through CRISPR/Cas9-targeted editing of the MeSWEET10a promoter in cassava. bioRxiv. (2022-03-02)[2023-10-10].https://doi.org/10.1101/2022.3.2.482644
    [51] Bull S E, Seung D, Chanez C, Mehta D, Kuon J E, Truernit E, Hochmuth A, Zurkirchen I, Zeeman S C, Gruissem W, Vanderschuren H. Accelerated ex situ breeding of GBSS- and PTST1-edited cassava for modified starch. Science Advances, 2018, 4: eaat6086
    [52] Luo S, Ma Q, Zhong Y, Jing J, Wei Z, Zhou W, Lu X, Tian Y, Zhang P. Editing of the starch branching enzyme gene SBE2 generates high-amylose storage roots in cassava. Plant Molecular Biology, 2022, 108, 429-442
    [53] Juma B S, Mukami A, Mweu C, Ngugi M P, Mbinda W. Targeted mutagenesis of the CYP79D1 gene via CRISPR/Cas9-mediated genome editing results in lower levels of cyanide in cassava. Frontiers in Plant Science, 2022, 13: 1009860
    [54] Gomez M A, Berkoff K C, Gill B K, Iavarone A T, Lieberman S E, Ma J M, Schultink A, Karavolias N G, Wyman S K, Chauhan R D, Taylor N J, Staskawicz B J, Cho M J, Rokhsar D S, Lyons J B. CRISPR-Cas9-mediated knockout of CYP79D1 and CYP79D2 in cassava attenuates toxic cyanogen production. Frontiers in Plant Science, 2023, 13: 1079254
    [55] Wang Y J, Lu X H, Zhen X H, Yang H, Che Y N, Hou J Y, Geng M T, Liu J, Hu X W, Li R M, Guo J C, Yao Y. A transformation and genome editing system for cassava cultivar SC8. Genes, 2022, 13: 1650
    [56] Tang C, Yang M, Fang Y, Luo Y, Gao S, Xiao X, An Z, Zhou B, Zhang B, Tan X, Yeang H Y, Qin Y, Yang J, Lin Q, Mei H, Montoro P, Long X, Qi J, Hua Y, He Z, Sun M, Li W, Zeng X, Cheng H, Liu Y, Yang J, Tian W, Zhuang N, Zeng R, Li D, He P, Li Z, Zou Z, Li S, Li C, Wang J, Wei D, Lai C Q, Luo W, Yu J, Hu S, Huang H. The rubber tree genome reveals new insights into rubber production and species adaptation. Nature Plants, 2016, 2 (6): 16073
    [57] 戴雪梅, 黄天带, 李季,杨先锋, 黄华孙. 不同外植体对橡胶树原生质体分离和再生的影响.分子植物育种, 2014, 12 (6): 1259-1264Dai X M, Huang T D, Li J, Yang X F, Huang H S. Effects of different explants on isolation and regeneration of protoplast in rubber tree. Molecular Plant Breeding, 2014,12 (6): 1259-1264
    [58] 刘承圆. 橡胶树Mlo基因的克隆和基因修饰载体的构建. 海口: 海南大学, 2018Liu C Y. Cloning of MLO gene in Hevea brasiliensis and construction of gene modified vectors. Haikou: Hainan University, 2018
    [59] Fan Y T, Xin S C, Dai X M, Yang X F, Huang H S, Hua Y W. Efficient genome editing of rubber tree (hevea brasiliensis) protoplasts using CRISPR/Cas9 ribonucleoproteins. Industrial Crops & Products, 2020, 146: 112146
    [60] Dai X M, Yang X F, Wang C, Fan Y T, Xin S C, Hua Y W, Wang K J, Huang H S. CRISPR/Cas9-mediated genome editing in Hevea brasiliensis. Industrial Crops & Products, 2021, 164: 113418
    [61] Masani M Y A, Izawati A M D, Rasid O A, Parveez G K A. Biotechnology of oil palm: Current status of oil palm genetic transformation. Biocatalysis and Agricultural Biotechnology, 2018, 15: 335-347
    [62] Yarra R, Jin L, Zhao Z, Cao H. Progress in tissue culture and genetic transformation of oil palm: An overview. International Journal of Molecular Sciences, 2019, 20 (21): 5353
    [63] Yeap W C, Norkhairunnisa C M K, Norfadzilah J, Muhammad Rashdan M, Appleton D R, Harikrishna K. An efficient clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 mutagenesis system for Oil Palm (Elaeis guineensis). Frontiers in Plant Science, 2021, 12: 773656
    [64] Breitler J C, Dechamp E, Campa C, Rodrigues L A Z, Guyot R, Marraccini P, Etienne H. CRISPR/Cas9-mediated efficient targeted mutagenesis has the potential to accelerate the domestication of Coffea canephora. Plant Cell, Tissue and Organ Culture, 2018, 134 (3): 383-394
    [65] Fister A S, Landherr L, Maximova S N, Guiltinan M J. Transient expression of CRISPR/Cas9 machinery targeting TcNPR3 enhances defense response in Theobroma cacao. Frontiers in Plant Science, 2018, 9: 268
    [66] Scharf A, Lang C, Fischer M. Genetic authentication: Differentiation of fine and bulk cocoa (Theobroma cacao L.) by a new CRISPR/Cas9-based in vitro method. Food Control, 2020, 114: 107219
    [67] Chen K, Wang Y, Zhang R, Zhang H, Gao C. CRISPR/Cas genome editing and precision plant breeding in agriculture. Annual Review of Plant Biology, 2019, 70: 667-697
    [68] Lowe K, Wu E, Wang N, Hoerster G, Hastings C, Cho MJ, Scelonge C, Lenderts B, Chamberlin M, Cushatt J, Wang L, Ryan L, Khan T, Chow-Yiua J, Hua W, Yu M, Banh J, Bao Z, Brink K, Igo E, Rudrappa B, Shamseer P M, Bruce W, Newman L, Shen B, Zheng P, Bideny D, Falco C, Register J, Zhao Z Y, Xu D, Jones T, Gordon-Kamm W. Morphogenic regulators BABY BOOM and WUSCHEL improve monocot transformation. Plant Cell, 2016, 28: 1998-2015
    [69] Debernardi J M, Tricoli D M, Ercoli M F, Hayta S, Ronald P, Palatnik J F, Dubcovsky J. A GRF-GIF chimeric protein improves the regeneration efficiency of transgenic plants. Nature Biotechnology, 2020, 38: 1274-1279
    [70] Wang K, Shi L, Liang X, Zhao P, Wang W, Liu J, Chang Y, Hiei Y, Yanagihara C, Du L, Ishida Y, Ye X G. The gene TaWOX5 overcomes genotype dependency in wheat genetic transformation. Nature Plants, 2022, 8: 110-117
    [71] Cao X, Xie H, Song M, Lu J, Ma P, Huang B, Wang M, Tian Y, Chen J, Lang Z, Li G, Zhu J K. Cut-dip-budding delivery system enables genetic modifications in plants without tissue culture. Innovation, 2022, 4 (1): 100345
    [72] Wolabu T W, Cong L, Park J J, Bao Q, Chen M, Sun J, Xu B, Ge Y, Chai M, Liu Z . Development of a highly efficient multiplex genome editing system in outcrossing tetraploid alfalfa (Medicago sativa). Frontiers in Plant Science, 2020, 11: 1063
    [73] Lorenzo C D, Debray K, Herwegh D, Develtere W, Impens L, Schaumont D, Vandeputte W, Aesaert S, Coussens G, De Boe Y. BREEDIT: A multiplex genome editing strategy to improve complex quantitative traits in maize. Plant Cell, 2022, 35 (1): 218-238
    [74] Gupta A, Liu B, Raza S, Chen Q J, Yang B. Modularly assembledmultiplex prime editors for simultaneous editing of agronomically important genes in rice. Plant Communications, 2023,DOI: https://doi.org/10.1016/j.xplc.2023.100741
    Related
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

Copy
Share
0
Article Metrics
  • Abstract:249
  • PDF: 916
  • HTML: 111
  • Cited by: 0
History
  • Received:October 10,2023
  • Revised:November 02,2023
  • Adopted:
  • Online: March 05,2024
  • Published: February 26,2024
Article QR Code
You are the 648842th visitor 京ICP备09069690号-23
® 2025 All Rights Reserved
Supported by:Beijing E-Tiller Technology Development Co., Ltd.
Firefox, Chrome, IE10, IE11 are recommended. Other browsers are not recommended.