Abstract:The type-B authentic response regulator (B-ARR) family members are positive regulators in cytokinin signal transduction, and play important roles in plant growth and development and resistance to abiotic stresses. However, there are few studies on the B-ARR gene family in wheat. In this study, 25 B-ARR gene family members were identified from wheat genome, and their physicochemical properties, gene structure, cis-acting elements and abiotic stress-induced expression patterns were analyzed by bioinformatics methods. The results showed that all B-ARR proteins were localized in the nucleus based on bioinformatics prediction, and their secondary structure was mainly consisting of α-helix and random crimp. B-ARR genes were not evenly distributed on wheat chromosomes, and the number of B-ARR genes was the highest on chromosome 7. In addition, multiple cis-acting regulatory elements related to growth and development, hormone response, and biological and abiotic stress have been identified in the promoter regions. RT-qPCR analysis showed that the relative expression of TaARRM-like9, TaARRM-like10, TaARRM-like12 and TaARRM-like13 were significantly up-regulated under abiotic stresses treatments, including drought, salt and low temperature. This study laid a foundation for further research on the role of B-ARR transcription factor in wheat development and abiotic stress response.