Abstract:Saline-alkali soil is one of the main types of marginal soils. Using the marginal land for agricultural cultivation is an effective way to alleviate the shortage of farming land. In order to screen soybean germplasm resources showing salt tolerance to improve soybean yield in saline soils, 392 samples from different geographic regions at home and abroad were treated with 150 mmol/L NaCl at the seedling stage. Each single plant was identified and genotyped using 10 SSR markers linked to salt tolerant genes, in order to perform molecular-assisted identification and genetic diversity analysis. Similarity coefficient analysis, cluster analysis and other methods were applied to comprehensively evaluate the soybean germplasm resources. Fifty-eight soybean germplasm resources were identified, including 14 showing high tolerance, such as Chidou 1 hao and Dongnong 69, and 44 showing salt-tolerant, such as Heinong 51 and Heihe 35. Although genotyping these 58 samples, Suinong 1 hao, Hefeng 50 and Dongda 2 hao carried the most salt tolerant allele variations, all of which were 6, and the average identification efficiency was 43.45% and the average accuracy was 68.46%, of which the molecular markers Satt201 had the highest identification efficiency of 60.34% and the highest accuracy of 96.55%. Cluster analysis showed that the similarity coefficients among the 58 soybean germplasm resources ranged from 0.5385 to 0.9231, with an average value of 0.6974 and a correlation coefficient of 0.6240, indicating that most of the 58 soybean germplasm resources were genetically close, and the genetic diversity was relatively low, and that the 58 soybean germplasm resources were not clustered geographically, but most of them were geographically identical or had the same place of origin in a taxon or subgroup. However, we didn’t detect the correlation between genetic similarity and geographically collection sites. The distant germplasm resources can be selected as parents, to breed new salt-tolerant soybean varieties.