Research Status on Cold Tolerance in Rice and Biotechnological Breeding Strategies for Cold-tolerant Early Geng/japonica in Heilongjiang Province
Author:
Affiliation:

1.College of Agriculture, Yangtze University, Jingzhou 434025, Hubei;2.Institute of Crop Sciences, Chinese Academy of Agricultural Sciences/State Key Laboratory of Crop Gene Resources and Breeding/National Key Facility for Crop Gene Resources and Genetic Improvement, Beijing 100081;3.Rice Research Institute, Heilongjiang Academy of Agricultural Sciences, Jiamusi 154026

Clc Number:

Fund Project:

Foundation project: Biological Breeding-Major Projects(2022ZD0400404)

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    With the global climate change, the probability of extreme weather events has significantly increased. As an important base for commercial rice production in China, Heilongjiang province is an area prone to low-temperature stresses. Geng/Japonica rice in Heilongjiang is susceptible to low-temperature stresses during both the seedling stage and the reproductive stage (including booting, flowering, and maturing stages). Low temperature stress is a key limiting factor for rice production in Heilongjiang, and improving cold tolerances of Heilongjiang Geng/japonica rice cultivars is of great strategic importance for ensuring the food production security in China. When reviewing the identification methods and genetic researches of rice cold tolerance, the authors analyzed the cold tolerance characteristics of Heilongjiang rice cultivars released in the past about 20 years (2006-2023), and found that with the "blowout" of approved cultivars in recent 5 years, the cold tolerances are going down. Secondly, through the comparative mapping based on reference genome, it was found that the cold tolerances at the seedling stage and the reproductive stage are mostly controlled by independent loci or chromosomal regions, and the proportion of genetic overlap (including both pleiotropic loci and linked regions) accounted for about 21%. Among the identified gene responsible for cold tolerances, the negative regulatory genes accounted for about 20%. For current breeding application, the above-mentioned genetic overlap loci/regions and negative regulatory genes are useful in improving the breeding efficiency. On this basis, the authors put forward specific suggestions on the simultaneous improvement of cold tolerance during the seedling stage and reproductive stage as well as strategies for the biotechnological breeding on improving the cold tolerances of early Geng/japonica rice for Heilongjiang province.

    Reference
    Related
    Cited by
Get Citation
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:March 03,2024
  • Revised:
  • Adopted:
  • Online: September 02,2024
  • Published:
You are the th visitor 京ICP备09069690号-23
® 2024 All Rights Reserved
Supported by:Beijing E-Tiller Technology Development Co., Ltd.