2025-5-30- 4
  • Home
  • About Journal
  • Editorial Board
  • Author
    Instruction
    Copyright Agreement
  • Ethcis Statement
  • Subscribe
  • Contact
  • 中文
Home > Archive>Volume 26, Issue 2, 2025 >319-330. DOI:10.19462/j.cnki.1671-895x.2023.01.025 Online First
PDF HTML XML Export Cite reminder
Fine Mapping of the Etiolation Mutant Gene Zmet 9 in Maize
DOI:
10.19462/j.cnki.1671-895x.2023.01.025
CSTR:
Author:
  • LI Yongsheng

    LI Yongsheng

    Crops Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou 730070
    Find this author on All Journals
    Find this author on BaiDu
    Search for this author on this site
  • WANG Xiaojuan

    WANG Xiaojuan

    Crops Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou 730070
    Find this author on All Journals
    Find this author on BaiDu
    Search for this author on this site
  • LIAN Xiaorong

    LIAN Xiaorong

    Crops Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou 730070
    Find this author on All Journals
    Find this author on BaiDu
    Search for this author on this site
  • LIANG Gensheng

    LIANG Gensheng

    Crops Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou 730070
    Find this author on All Journals
    Find this author on BaiDu
    Search for this author on this site
  • HE Haijun

    HE Haijun

    Crops Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou 730070
    Find this author on All Journals
    Find this author on BaiDu
    Search for this author on this site
  • YANG Yanzhong

    YANG Yanzhong

    Crops Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou 730070
    Find this author on All Journals
    Find this author on BaiDu
    Search for this author on this site
  • ZHOU Wenqi

    ZHOU Wenqi

    Crops Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou 730070
    Find this author on All Journals
    Find this author on BaiDu
    Search for this author on this site
  • DONG Xiaoyun

    DONG Xiaoyun

    Crops Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou 730070
    Find this author on All Journals
    Find this author on BaiDu
    Search for this author on this site
  • ZHOU Yuqian

    ZHOU Yuqian

    Crops Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou 730070
    Find this author on All Journals
    Find this author on BaiDu
    Search for this author on this site
  • LIU Zhongxiang

    LIU Zhongxiang

    Crops Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou 730070
    Find this author on All Journals
    Find this author on BaiDu
    Search for this author on this site
Affiliation:

Crops Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou 730070

Clc Number:

Fund Project:

Foundation projects: The Natural Science Foundation of China (32260473);The Biological Breeding Special Project of Gansu Academy of Agricultural Sciences(2024GAAS24, 2022GAAS04);Lanzhou Science and Technology Plan Project (2023-3-43)

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference [46]
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Photosynthesis is the basis for plant survival. Leaf color mutants are often accompanied by abnormal chloroplast structure and blocked photosynthetic pigment synthesis. Therefore, the study of leaf color mutants can provide experimental data and theoretical support for photosynthesis and photomorphogenesis. In this study, maize etiolation mutant et9, which was identified from maize inbred line PH6WC treated by 2.48 Gy fast neutron irradiation, was used as the material. Through phenotypic identification, determination of chlorophyll content in leaves, microscopic observation of chloroplast structure and analysis of photosynthetic characteristics, plant height and panicle height of et9 plants were very significantly lower than those of the wild type. The flag leaf length, flag leaf width and the third leaf width were very significantly reduced in mutant. The tasseling, pollen shedding and silking stages were delayed by 10-12 days compared with the wild type. The contents of chlorophyll a, chlorophyll b and total chlorophyll were obviously lower than those of the wild type. The chloroplast structure is loose, the distribution of thylakoids is chaotic, and the number of basal grains is small. In contrast to the wild type, the net photosynthetic rate, stomatal conductance and transpiration rate decreased significantly, while the intercellular carbon dioxide concentration increased significantly. The chloroplast fluorescence parameters were significantly lower than those of the wild type except for photochemical quenching. Genetic segregation analysis revealed that the yellowing phenotype was controlled by a nuclear recessive gene, named Zmet9. The F2 segregating population was generated by crossing it with maize inbred line B73, and the mutation site was initially located in the 20-22 Mb on chromosome 9 of maize using the BSR-seq method. Four KASP markers and two InDel markers were further developed in the initial mapping interval, and about 1100 plants showing mutant phenotype were used for fine mapping. Finally, Zmet9 was finely mapped to a region of about 160 kb between markers KASP19 and 2040. This interval contains five annotated candidate genes, of which Zm00001d045384 encodes an iron superoxide dismutase. Considering that mutation of its homologous genes FSD2 and FSD3 in Arabidopsis shows leaf color bleaching phenotype, we speculate that Zm00001d045384 may be a candidate gene for Zmet9.

    Key words:maize;etiolation mutant gene Zmet9;BSR-seq;fine mapping
    Reference
    [1] 李想. 大白菜黄化突变基因Brpem1精细定位及表达特性分析. 沈阳:沈阳农业大学, 2019Li X. Fine mapping and expression characteristics of the etiolated mutant gene Brpem1 in Chinese cabbage. Shenyang: Shenyang Agricultural University, 2019
    [2] Eckhardt U, Grimm B, Hrtensteiner S. Recent advances in chlorophyll biosynthesis and breakdown in higher plants. Plant Molecular Biology, 2004, 56(1): 1-14
    [3] 韩帅, 王立静, 钟世宜, 赵 燕, 刘保申. 一个新的玉米叶色突变体的遗传分析及基因定位. 玉米科学, 2012, 20(3): 26-28Han S, Wang L J, Zhong S Y, Zhao Y, Liu B S. Genetic analysis and gene mapping of a new leaf color mutant in maize. Journal of Maize Sciences, 2012, 20(3): 26-28
    [4] 彭雷. 玉米黄化突变体eti1的鉴定、遗传分析及突变基因初步克隆. 郑州:河南大学, 2015Peng L. Identification、genetic analysisand preliminary map-based cloning of etiolated mutant eti1 in maize. Zhengzhou: Henan University, 2015
    [5] 李秦, 杜何为. 玉米叶色突变体研究进展. 南方农业, 2019, 13(28): 14-21,27Li Q, Du H W. Research progress on maize leaf color mutants. Southern Agriculture, 2019, 13(28): 14-21,27
    [6] Sheehan M J. Structure and expression of maize phytochrome family homeologs. Genetics, 2004, 167(3): 1395-1405
    [7] Shi D Y, Zheng X, Li L, Lin W H, Xie W H, Yang J P, Chen S J, Jin W W. Chlorophyll deficiency in the maize elongated mesocotyl2 mutant is caused by a defective heme oxygenase and delaying grana stacking. PLoS ONE, 2013, 8(11): e80107
    [8] 杨泽峰,张恩盈,徐暑晖,毛蓓丽,潘亮,陈庆,徐辰武.玉米ELM1基因的序列变异及与株型和穗部相关性状的关联分析.科技导报, 2014, 32(35): 78-84Yang Z F, Zhang E Y, Xu S H, Mao B L, Pan L, Chen Q, Xu C W. Sequence variations of the maize ELM1 gene and their association with plant types and ear traits. Science & Technology Review, 2014, 32(35): 78-84
    [9] Sawers R J H, Linley P J, Gutierrez-Marcos J F, Delli-Bovi T, Farmer P R, Kohchi T, Terry M J, Brutnell T P. The elm1 (ZmHy2) gene of maize encodes a phytochromobilin synthase. Plant Physiology, 2004, 136(1): 2771-2781
    [10] Guan H Y, Xu X B, He C M, Liu C X, Wang L M. Fine mapping and candidate gene analysis of the leaf-color gene ygl-1 in maize. PLoS ONE, 2016, 11(4): e0153962
    [11] Xing A, Williams M E, Bourett T M, Hu W, Hou Z, Meeley R B, Jaqueth J, Dam T, Li B. A pair of homoeolog ClpP5 genes underlies a virescent yellow-like mutant and its modifier in maize. The Plant Journal, 2014, 79(2): 192-205
    [12] 钟世宜. 三个玉米叶色突变体的鉴定和遗传分析. 泰安: 山东农业大学,2013Zhong S Y. Identification and genetic analysis of three maize leaf color mutants. Tai'an: Shandong Agricultural University, 2013
    [13] 舒庆尧, 刘贵付, 夏英武. 温敏水稻叶色突变体的研究. 核农学报, 1996, 10(1): 6-10Shu Q Y, Liu G F, Xia Y W. Study on temperature-sensitive rice leaf color mutants. Chinese Journal of Nuclear Agronomy, 1996, 10(1): 6-10
    [14] Gan S, Amasino R M. Inhibition of leaf senescence autoregulated production of cytokinin. Science, 1995, 270(5244): 1986-1988
    [15] Hui Z, Tian F X, Wang G K, Wang G P, Wang W. The antioxidative defense system is involved in the delayed senescence in a wheat mutant tasg1. Plant Cell Reports, 2012, 31(6): 1073-1084
    [16] 张友炯, 曾建明, 章志芳, 郝国双, 俞燎远, 聂美英, 李静. 白化茶树新品种“中白1号”选育报告. 中国茶叶, 2016, 38(3): 22-24Zhang Y J, Zeng J M, Zhang Z F, Hao G S,Yu L Y, Nie M Y, Li J. Breeding report of a new albino tea variety "Zhongbai No. 1". China Tea, 2016, 38(3): 22-24
    [17] 成浩, 李素芳, 陈明,虞富莲,晏 静,刘益民,陈龙安. 安吉白茶特异性状的生理生化本质. 茶叶科学, 1999, 19(2):87-92Cheng H, Li S F, Chen M, Yu F L, Yan J, Liu Y M, Chen L A. Physiological and biochemical essence of the extraordinary characters of Anji Baicha. Tea Science, 1999, 19(2):87-92
    [18] 何冰, 刘玲珑, 张文伟, 万建民. 植物叶色突变体. 植物生理学通讯, 2006, 42(1):1-9He B, Liu L L, Zhang W W, Wan J M. Plant leaf color mutants. Plant Physiology Letters, 2006, 42(1):1-9
    [19] 刘文真. 三个水稻叶色突变体的鉴定与基因克隆. 杭州:浙江大学, 2006Liu W Z. Identification and gene cloning of three rice leaf color mutants. Hangzhou: Zhejiang University, 2006
    [20] Liu X, Yu W, Wang G, Cao F, Cai J, Wang H. Comparative proteomic and physiological analysis reveals the variation mechanisms of leaf coloration and carbon fixation in a xantha mutant of Ginkgo biloba L.. International Journal of Molecular Sciences, 2016, 17(11): e1794
    [21] 刘富中, 张映, 杨锦坤, 陈钰辉, 舒金帅, 李淑培, 陈露露. 茄子叶色黄化突变体的特征及遗传分析. 园艺学报, 2020, 47(12): 2340-2348Liu F Z, Zhang Y, Yang J K, Chen Y H, Shu J S, Li S P, Chen L L.Characteristics and genetic analysis of eggplant leaf color yellowing mutants. Chinese Journal of Horticulture, 2020, 47(12): 2340-2348
    [22] 康伟伟, 李哲理, 易自力, 孙志忠, 盛夏冰, 黄安平, 段美娟, 谭炎宁. 水稻黄叶突变体yl(t)的鉴定与遗传分析. 农业生物技术学报, 2020, 28(12): 2108-2117Kang W W, Li Z L, Yi Z L, Sun Z Z, Sheng X B, Huang A P, Duan M J, Tan Y N . Identification and genetic analysis of the yellow leaf mutant yl(t) in rice. Chinese Journal of Agricultural Biotechnology, 2020, 28(12): 2108-2117
    [23] 王中豪, 贺彦, 张晓波, 徐霞, 吴建利, 施勇烽. 水稻白化转绿和穗顶端退化突变体vpa1的遗传分析和基因定位. 中国水稻科学, 2020, 35(1): 19-26Wang Z H, He Y, Zhang X B, Xu X, Wu J L, Shi Y F. Genetic analysis and gene mapping of vpa1 mutant from albino to green and panicle apical degeneration in rice. China Rice Science, 2020, 35(1): 19-26
    [24] Millerd A, McWilliam J R. Studies on a maize mutant sensitive to low temperature I. Influence of temperature and light on the production of chloroplast pigments. Plant Physiology, 1968, 43(12): 1967-1972
    [25] 陈甲法. 一个玉米叶色突变体的遗传研究. 郑州: 河南农业大学, 2009Chen J F. Genetic study of a maize leaf color mutant. Zhengzhou: Henan Agricultural University, 2009
    [26] Eckhardt L, Grimm B, Hortensteiner S. Recent advances in chlorophyll biosynthesis and breakdown in higher plants. Plant Molecular Biology, 2004, 56(1): 1-14
    [27] Jiang H, Li M, Liang N, Yan H, Wei Y, Xu X, Liu J, Xu Z, Fan C, Wu G. Molecular cloning and function analysis of the stay green gene in rice. Plant Journal, 2007, 52(2): 197-209
    [28] Kusaba M, Ito H, Morita R, Iida S, Sato Y, Fujimoto M, Kawasaki S, Tanaka R, Hirochika H, Nishimura M, Tanaka A. Rice NON-YELLOW COLORING1 is involved in light-harvesting complex II and gram degradation during leaf senescene. Plant Cell, 2007, 19(4): 1362-1375
    [29] 石云素, 黎裕, 王天宇, 宋燕春. 玉米种质资源描述规范和数据标准. 北京:中国农业出版社,2006:10-51Shi Y S, Li Y, Wang T Y, Song Y C. Description and datastandard for maize (Zea mays L.). Beijing:China Agriculture Press, 2006: 10-51
    [30] 李玉荣. BSR-Seq方法定位玉米黄化突变基因. 武汉: 华中农业大学, 2014Li Y R. Etiolation mutant gene mapping via bulked segregant RNA-Seq (BSR-Seq) method in maize. Wuhan: Huazhong Agricultural University, 2014
    [31] Qin Y, Xiao Z, Zhao H, Wang J, Wang Y, Qiu F. Starch phosphorylase 2 is essential for cellular carbohydrate partitioning in maize. Journal of Integrative Plant Biology, 2022, 64(9): 1755-1769
    [32] Liu S, Yeh C T, Tang H M , Nettleton D , Schnable P S. Gene mapping via bulked segregant RNA-Seq (BSR-Seq). PLoS ONE,2012,7(5): e36406
    [33] 李秦,杜何为. 玉米叶色突变体研究进展. 南方农业, 2019, 13(28): 14-21,27Li Q, Du H W. Research progress on maize leaf color mutants. Southern Agriculture, 2019, 13(28): 14-21,27
    [34] 韩帅,王立静,钟世宜, 赵燕, 刘保申. 一个新的玉米叶色突变体的遗传分析及基因定位. 玉米科学, 2012, 20(3): 26-28Han S, Wang L J, Zhong S Y, Zhao Y, Liu B S. Genetic analysis and gene mapping of a new leaf color mutant in maize. Journal of Maize Sciences, 2012,20(3):26-28
    [35] 马乾. 拟南芥叶绿体TAC复合物相互作用网络的构建. 上海:上海师范大学, 2014Ma Q. Mapping an Arabidopsis plastid transcriptional active chromosome interaction network. Shanghai: Shanghai Normal University, 2014
    [36] 刘敏. 拟南芥黄色叶片突变体的基因定位和功能的初步研究. 广州:华南农业大学, 2020Liu M. The gene identification of an Arabidopsis thaliana yellow leaf mutant and its preliminary fuction study. Guangzhou: South China Agricultural University, 2020
    [37] Fumiyoshi M, Chieko H, Taishi U, Haruko I, Takashi K, Reiko M, Yuriko S, Noriko N, Masahiko I, and Kazuo S. A heterocomplex of iron superoxide dismutases defends chloroplast nucleoids against oxidative stress and is essential for chloroplast development in Arabidopsis. Plant Cell, 2008, 20(11): 3148-3162
    [38] Sawers R J, Linley P J, Farmer P R, Hanley N P, Costich D E, Terry M J, Brutnell T P. Elongated mesocotyl1, a phytochrome-deficient mutant of maize. Plant Physiology, 2002, 130(1): 155-163
    [39] Guan H, Xu X, He C, Liu C, Liu Q, Dong R, Liu T, Wang L. Fine mapping and candidate gene analysis of the leaf-color gene ygl-1 in maize. PLoS ONE, 2016, 11(4): e0153962
    [40] Zhang Y F, Hou M M, Tan B C. The requirement of WHIRLY1 for embryogenesis is dependent on genetic background in maize. PLoS ONE, 2013, 8(6): p0067369
    [41] 彭雷. 玉米黄化突变体 eti1的鉴定、遗传分析及突变基因初步克隆. 郑州:河南大学, 2015Peng L. Identification, genetic analysisand preliminary map-based cloning of etiolated mutant eti1 in maize. Zhengzhou: Henan University, 2015
    [42] 髙先玉. 玉米黄化突变体xy122 的基因定位及生理分析. 泰安: 山东农业大学, 2019Gao X Y. Gene Mapping and Physiological Analysis of Maize Yellow Mutant xy122. Tai'an: Shandong Agricultural University, 2019
    [43] 刘胜坤.玉米突变体74101黄化基因的定位及克隆. 泰安: 山东农业大学, 2023Liu S K. Localization and Cloning of Yellowing Genes in Maize Mutant 74101. Tai'an: Shandong Agricultural University,2023
    [44] 徐冬平. 一份玉米全生育期黄化材料的初步研究. 成都:四川农业大学, 2013Xu D P. The preliminary study about a yellow green maize of whole growth period. Chengdu: Sichuan Agricultural University, 2013
    [45] 何汛锋. 水稻后期黄化突变体lle的生理特性与候选基因分析. 南昌:江西农业大学, 2021He X F. Physiological characteristics and candidate genes analysis of leaf late etiolation mutant lle of rice. Nanchang: Jiangxi Agricultural University, 2021
    [46] 赵亚然. 番茄EMS诱变叶片黄化突变体ym的生理分析和候选基因预测. 沈阳:沈阳农业大学, 2023Zhao Y R. Physiological analysis and candidate gene prediction of ym mutants mutated by EMS in tomato leaves. Shenyang: Shenyang Agricultural University, 2023
    Related
    Cited by
Get Citation

Copy
Related Videos

Share
0
Article Metrics
  • Abstract:79
  • PDF: 447
  • HTML: 43
  • Cited by: 0
History
  • Received:May 09,2024
  • Revised:
  • Adopted:
  • Online: January 23,2025
  • Published:
Article QR Code
You are the th visitor 京ICP备09069690号-23
® 2025 All Rights Reserved
Supported by:Beijing E-Tiller Technology Development Co., Ltd.
Firefox, Chrome, IE10, IE11 are recommended. Other browsers are not recommended.