2025-6-7- 18
  • Home
  • About Journal
  • Editorial Board
  • Author
    Instruction
    Copyright Agreement
  • Ethcis Statement
  • Subscribe
  • Contact
  • 中文
Home > Archive>Volume 26, Issue 4, 2025 >797-807. DOI:10.13430/j.cnki.jpgr.20240822001 Online First
PDF HTML XML Export Cite reminder
Creation of Near-Isogenic Lines and Analysis of Candidate Genes for Grain Number Per Spike in Wheat
DOI:
10.13430/j.cnki.jpgr.20240822001
CSTR:
Author:
  • CHEN Wang 1,2

    CHEN Wang

    College of Agronomy, Qingdao Agricultural University, Qingdao 266109,Shandong;Institute of Food Crops, Hubei Academy of Agricultural Sciences/Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs/Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Wuhan 430064
    Find this author on All Journals
    Find this author on BaiDu
    Search for this author on this site
  • WANG Dian 1

    WANG Dian

    College of Agronomy, Qingdao Agricultural University, Qingdao 266109,Shandong
    Find this author on All Journals
    Find this author on BaiDu
    Search for this author on this site
  • SONG Bo 1

    SONG Bo

    College of Agronomy, Qingdao Agricultural University, Qingdao 266109,Shandong
    Find this author on All Journals
    Find this author on BaiDu
    Search for this author on this site
  • LIU Yike 2

    LIU Yike

    Institute of Food Crops, Hubei Academy of Agricultural Sciences/Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs/Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Wuhan 430064
    Find this author on All Journals
    Find this author on BaiDu
    Search for this author on this site
  • ZHU Zhanwang 2

    ZHU Zhanwang

    Institute of Food Crops, Hubei Academy of Agricultural Sciences/Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs/Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Wuhan 430064
    Find this author on All Journals
    Find this author on BaiDu
    Search for this author on this site
  • WEI Bo 3

    WEI Bo

    Peking University Institute of Advanced Agricultural Sciences/National Key Laboratory of Wheat Improvement/Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang 261325, Shandong
    Find this author on All Journals
    Find this author on BaiDu
    Search for this author on this site
  • NING Qiang 2

    NING Qiang

    Institute of Food Crops, Hubei Academy of Agricultural Sciences/Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs/Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Wuhan 430064
    Find this author on All Journals
    Find this author on BaiDu
    Search for this author on this site
Affiliation:

1.College of Agronomy, Qingdao Agricultural University, Qingdao 266109,Shandong;2.Institute of Food Crops, Hubei Academy of Agricultural Sciences/Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs/Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Wuhan 430064;3.Peking University Institute of Advanced Agricultural Sciences/National Key Laboratory of Wheat Improvement/Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang 261325, Shandong

Clc Number:

Fund Project:

Foundation project: National Natural Science Foundation of China(32072061,32272173,31571750)

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference [37]
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    To develop novel genetic materials with breeding potential and identify genetic intervals regulating grain number per spike in wheat, we conducted a comprehensive study using near-isogenic lines (NILs) through crossing the octoploid Thinopyrum ponticum derived wheat cultivars Hengguan 35 and Kenong 199. Seven yield-related traits, including plant height, effective tiller number, spike length, spikelet number per spike, grain number per spike, grain yield per plant and thousand grain weight, were systematically evaluated. Genome-wide scanning was performed using the 660K SNP array to identify polymorphic loci and conserved physical intervals between two pairs of NILs. Candidate genes were predicted through integrated analysis of gene annotation and expression profiles within the candidate regions. The results indicated that NIL pairs N81/N82 and N86/N87 exhibited significant differences in spike-related traits while maintaining genetic similarities of 98.02% and 98.78%, respectively. SNP polymorphism analysis identified three conserved genomic regions associated with spike architecture, 662-669 Mb on chromosome 1B, 19-25 Mb on chromosome 3B, and 541-548 Mb on chromosome 5B. Through integration of QTL mapping data, gene functional annotation, expression analysis, and orthologous gene comparison, we identified three putative candidate genes regulating grain number per spike: TraesCS1B02G443200, encoding malate dehydrogenase on chromosome 1B, TraesCS3B02G042400, encoding an AP2/ERF transcription factor on chromosome 3B, and TraesCS5B02G366500, encoding a C2H2-type zinc finger protein on chromosome 5B. These findings provide a theoretical reference for identifying genes regulating grain number per spike in wheat.

    Key words:wheat;660K SNP array;near-isogenic lines;spike related traits;candidate genes
    Reference
    [1] Xiao J, Liu B, Yao Y, Guo Z, Jia H, Kong L, Zhang A, Ma W, Ni Z, Xu S, Lu F, Jiao Y, Yang W, Lin X, Sun S, Lu Z, Gao L, Zhao G, Cao S, Chen Q, Zhang K, Wang M, Wang M, Hu Z, Guo W, Li G, Ma X, Li J, Han F, Fu X, Ma Z, Wang D, Zhang X, Ling H Q, Xia G, Tong Y, Liu Z, He Z, Jia J, Chong K. Wheat genomic study for genetic improvement of traits in China. Science China Life Sciences, 2022, 65(9): 1718-1775
    [2] Shewry P R, Hey S J. The contribution of wheat to human diet and health. Food and Energy Security, 2015, 4(3): 178-202
    [3] Luo X, Yang Y, Lin X, Xiao J. Deciphering spike architecture formation towards yield improvement in wheat. Journal of Genetics and Genomics, 2023, 50(11): 835-845
    [4] Hao C, Jiao C, Hou J, Li T, Liu H, Wang Y, Zheng J, Liu H, Bi Z, Xu F, Zhao J, Ma L, Wang Y, Majeed U, Liu X, Appels R, Maccaferri M, Tuberosa R, Lu H, Zhang X. Resequencing of 145 landmark cultivars reveals asymmetric sub-genome selection and strong founder genotype effects on wheat breeding in China. Molecular Plant, 2020, 13(12): 1733-1751
    [5] Pang Y, Liu C, Wang D, St Amand P, Bernardo A, Li W, He F, Li L, Wang L, Yuan X, Dong L, Su Y, Zhang H, Zhao M, Liang Y, Jia H, Shen X, Lu Y, Jiang H, Wu Y, Li A, Wang H, Kong L, Bai G, Liu S. High-resolution genome-wide association study identifies genomic regions and candidate genes for important agronomic traits in wheat. Molecular Plant, 2020, 13(9): 1311-1327
    [6] Li A, Hao C, Wang Z, Geng S, Jia M, Wang F, Han X, Kong X, Yin L, Tao S, Deng Z, Liao R, Sun G, Wang K, Ye X, Jiao C, Lu H, Zhou Y, Liu D, Fu X, Zhang X, Mao L. Wheat breeding history reveals synergistic selection of pleiotropic genomic sites for plant architecture and grain yield. Molecular Plant, 2022, 15(3): 504-519
    [7] 姚琦馥, 周界光, 王健, 陈黄鑫, 杨瑶瑶, 刘倩, 闫磊, 王瑛, 周景忠, 崔凤娟, 蒋云, 马建. 小麦穗长QTL鉴定及其遗传分析. 中国农业科学, 2023, 56(24): 4814-4825Yao Q F,Zhou J G,Wang J,Chen H X,Yang Y Y,Liu Q,Yan L,Wang Y,Zhou J Z,Cui F J,Jiang Y,Ma J. Identification and genetic analysis of QTL for wheat spike length. Scientia Agricultura Sinica, 2023, 56(24): 4814-4825
    [8] 马艳明, 冯智宇, 王威, 张胜军, 郭营, 倪中福, 刘杰. 新疆冬小麦品种农艺及产量性状遗传多样性分析. 作物学报, 2020, 46(12): 1997-2007Ma Y M,Feng Z Y,Wang W,Zhang S J,Guo Y,Ni Z F,Liu J. Analysis of genetic diversity of agronomic and yield traits in winter wheat varieties in Xinjiang. Acta Agronomica Sinica, 2020, 46(12): 1997-2007
    [9] Finnegan E J, Ford B, Wallace X, Pettolino F, Griffin P T, Schmitz R J, Zhang P, Barrero J M, Hayden M J, Boden S A, Cavanagh C A, Swain S M, Trevaskis B. Zebularine treatment is associated with deletion of FT-B1 leading to an increase in spikelet number in bread wheat. Plant Cell and Environment, 2018, 41(6): 1346-1360
    [10] Shaw L M, Lyu B, Turner R, Li C, Chen F, Han X, Fu D, Dubcovsky J. FLOWERING LOCUS T2 regulates spike development and fertility in temperate cereals. Journal of Experimental Botany, 2019, 70(1): 193-204
    [11] Zhang X, Jia H, Li T, Wu J, Nagarajan R, Lei L, Powers C, Kan C C, Hua W, Liu Z, Chen C, Carver B F, Yan L. TaCol-B5 modifies spike architecture and enhances grain yield in wheat. Science, 2022, 376(6589): 180-183
    [12] Zhang B, Liu X, Xu W, Chang J, Li A, Mao X, Zhang X, Jing R. Novel function of a putative MOC1 ortholog associated with spikelet number per spike in common wheat. Scientific Reports, 2015, 5: 12211
    [13] Sakuma S, Golan G, Guo Z, Ogawa T, Tagiri A, Sugimoto K, Bernhardt N, Brassac J, Mascher M, Hensel G, Ohnishi S, Jinno H, Yamashita Y, Ayalon I, Peleg Z, Schnurbusch T, Komatsuda T. Unleashing floret fertility in wheat through the mutation of a homeobox gene. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(11): 5182-5187
    [14] Debernardi J M, Greenwood J R, Jean Finnegan E, Jernstedt J, Dubcovsky J. APETALA 2-like genes AP2L2 and Q specify lemma identity and axillary floral meristem development in wheat. Plant Journal, 2020, 101(1): 171-187
    [15] Wang Y, Du F, Wang J, Wang K, Tian C, Qi X, Lu F, Liu X, Ye X, Jiao Y. Improving bread wheat yield through modulating an unselected AP2/ERF gene. Nature Plants, 2023, 9(2): 372
    [16] Huang X, Qian Q, Liu Z, Sun H, He S, Luo D, Xia G, Chu C, Li J, Fu X. Natural variation at the DEP1 locus enhances grain yield in rice. Nature Genetics, 2009, 41(4): 494-497
    [17] Jablonski B, Bajguz A, Bocian J, Orczyk W, Nadolska-Orczyk A. Genotype-dependent effect of silencing of TaCKX1 and TaCKX2 on phytohormone crosstalk and yield-related traits in wheat. International Journal of Molecular Sciences, 2021, 22(21): 11494
    [18] Shen L, Zhang L, Yin C, Xu X, Liu Y, Shen K, Wu H, Sun Z, Wang K, He Z. The wheat sucrose synthase gene TaSus1 is a determinant of grain number per spike. The Crop Journal, 2024, 12(1): 295-300
    [19] Lin X, Xu Y, Wang D, Yang Y, Zhang X, Bie X, Gui L, Chen Z, Ding Y, Mao L, Zhang X, Lu F, Zhang X, Uauy C, Fu X, Xiao J. Systematic identification of wheat spike developmental regulators by integrated multi-omics, transcriptional network, GWAS, and genetic analyses. Molecular Plant, 2024, 17(3): 438-459
    [20] Pei Y, Deng Y, Zhang H, Zhang Z, Liu J, Chen Z, Cai D, Li K, Du Y, Zang J, Xin P, Chu J, Chen Y, Zhao L, Liu J, Chen H. EAR APICAL DEGENERATION1 regulates maize ear development by maintaining malate supply for apical inflorescence. Plant Cell, 2022, 34(6): 2222-2241
    [21] Yano A, Kodama Y, Koike A, Shinya T, Kim H J, Matsumoto M, Ogita S, Wada Y, Ohad N, Sano H. Interaction between methyl CpG-binding protein and ran GTPase during cell division in tobacco cultured cells. Annals of Botany, 2006, 98(6): 1179-1187
    [22] Zhang B, Li C, Li Y, Yu H. Mobile TERMINAL FLOWER1 determines seed size in Arabidopsis. Nature Plants, 2020, 6(9): 1146-1157
    [23] Smit M E, McGregor S R, Sun H, Gough C, B?gman A M, Soyars C L, Kroon J T, Gaudinier A, Williams C J, Yang X, Nimchuk Z L, Weijers D, Turner S R, Brady S M, Etchells J P. A PXY-mediated transcriptional network integrates signaling mechanisms to control vascular development in Arabidopsis. Plant Cell, 2020, 32(2): 319-335
    [24] Papdi C, Pérez-Salamó I, Joseph M P, Giuntoli B, B?gre L, Koncz C, Szabados L. The low oxygen, oxidative and osmotic stress responses synergistically act through the ethylene response factor VII genes RAP2.12, RAP2.2 and RAP2.3. Plant Journal, 2015, 82(5): 772-784
    [25] Chevalier F, Perazza D, Laporte F, Le Hénanff G, Hornitschek P, Bonneville J M, Herzog M, Vachon G. GeBP and GeBP-like proteins are noncanonical leucine-zipper transcription factors that regulate cytokinin response in Arabidopsis. Plant Physiology, 2008, 146(3): 1142-1154
    [26] Li M, Li H, Zhu Q, Liu D, Li Z, Chen H, Luo J, Gong P, Ismail A M, Zhang Z. Knockout of the sugar transporter OsSTP15 enhances grain yield by improving tiller number due to increased sugar content in the shoot base of rice (Oryza sativa L.). New Phytologist, 2024, 241(3): 1250-1265
    [27] Huang C, Wang D, Yang Y, Yang H, Zhang B, Li H, Zhang H, Li Y, Yuan W. SUPPRESSOR OF FRIGIDA 4 cooperates with the histone methylation reader EBS to positively regulate root development. Plant Physiology, 2024,196(4):2199-2212
    [28] Kim S, Choi K, Park C, Hwang H J, Lee I. SUPPRESSOR OF FRIGIDA4, encoding a C2H2-Type zinc finger protein, represses flowering by transcriptional activation of Arabidopsis FLOWERING LOCUS C. Plant Cell, 2006, 18(11): 2985-2998
    [29] Ahn C S, Cho H K, Lee D H, Sim H J, Kim S G, Pai H S. Functional characterization of the ribosome biogenesis factors PES, BOP1, and WDR12 (PeBoW), and mechanisms of defective cell growth and proliferation caused by PeBoW deficiency in Arabidopsis. Journal of Experimental Botany, 2016, 67(17): 5217-5232
    [30] Liu F, Qu P Y, Li J P, Yang L N, Geng Y J, Lu J Y, Zhang Y, Li S. Arabidopsis protein S-acyl transferases positively mediate BR signaling through S-acylation of BSK1. Proceedings of the National Academy of Sciences of the United States of America, 2024, 121(7): e2322375121
    [31] Yang Y, Amo A, Wei D, Chai Y, Zheng J, Qiao P, Cui C, Lu S, Chen L, Hu Y G. Large-scale integration of meta-QTL and genome-wide association study discovers the genomic regions and candidate genes for yield and yield-related traits in bread wheat. Theoretical and Applied Genetics, 2021, 134(9): 3083-3109
    [32] Saini D K, Srivastava P, Pal N, Gupta P K. Meta-QTLs, ortho-meta-QTLs and candidate genes for grain yield and associated traits in wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 2022, 135(3): 1049-1081
    [33] Liu H, Ma J, Tu Y, Zhu J, Ding P, Liu J, Li T, Zou Y, Habib A, Mu Y. Several stably expressed QTL for spike density of common wheat (Triticum aestivum L.) in multiple environments. Plant Breeding, 2020, 139(2): 284-294
    [34] Li T, Deng G, Su Y, Yang Z, Tang Y, Wang J, Qiu X, Pu X, Li J, Liu Z, Zhang H, Liang J, Yang W, Yu M, Wei Y, Long H. Identification and validation of two major QTLs for spike compactness and length in bread wheat (Triticum aestivum L.) showing pleiotropic effects on yield-related traits. Theoretical and Applied Genetics, 2021, 134(11): 3625-3641
    [35] Ai G, He C, Bi S, Zhou Z, Liu A, Hu X, Liu Y, Jin L, Zhou J, Zhang H, Du D, Chen H, Gong X, Saeed S, Su H, Lan C, Chen W, Li Q, Mao H, Li L, Liu H, Chen D, Kaufmann K, Alazab K F, Yan W. Dissecting the molecular basis of spike traits by integrating gene regulatory networks and genetic variation in wheat. Plant Communications, 2024, 5(5): 100879
    [36] Shang E, Wang X, Li T, Guo F, Ito T, Sun B. Robust control of floral meristem determinacy by position-specific multifunctions of KNUCKLES. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(36): e2102826118
    [37] Zhuang H, Wang H L, Zhang T, Zeng X Q, Chen H, Wang Z W, Zhang J, Zheng H, Tang J, Ling Y H, Yang Z L, He G H, Li Y F. NONSTOP GLUMES1 encodes a C2H2 zinc finger protein that regulates spikelet development in rice. Plant Cell, 2020, 32(2): 392-413
    Related
    Cited by
Get Citation

Copy
Related Videos

Share
0
Article Metrics
  • Abstract:74
  • PDF: 119
  • HTML: 20
  • Cited by: 0
History
  • Received:August 22,2024
  • Revised:
  • Adopted:
  • Online: April 03,2025
  • Published:
Article QR Code
You are the 670073th visitor 京ICP备09069690号-23
® 2025 All Rights Reserved
Supported by:Beijing E-Tiller Technology Development Co., Ltd.
Firefox, Chrome, IE10, IE11 are recommended. Other browsers are not recommended.