基于高通量芯片的大麦高效KASP标记的开发和应用

DOI: 10.13430/j.cnki.jpgr.20231214001

徐婷婷,孟 珊,朱小品,邹淑琼,狄佳春,杨 欣,朱 银,郭春滨,颜 伟 (江苏省农业科学院种质资源与生物技术研究所/江苏省农业种质资源保护与利用平台/江苏省农业生物学重点实验室,南京 210014)

摘要:分子标记是遗传研究的基础工具,广泛应用于遗传多样性研究、种质鉴定、遗传图谱构建和基因定位等领域。本研究利用Barley SNP 50K 芯片对遗传背景来源广泛的大麦核心资源进行 SNP检测,筛选出一系列多态性高的 SNP位点,并开发出 124个 KASP分子标记。利用 43份不同地理来源的大麦种质检测其有效性,初步筛选出 56个 KASP标记;以最小等位基因频率 >0.40、多态信息含量 >0.45 为标准挑选 18 个高质量的 KASP标记并用于绘制 98份江苏省大麦品种的系统发育树,结果显示这 18个 KASP标记能够将具有相同地理来源及亲缘关系近的大麦材料聚为一类,表明上述 KASP标记在大麦品种鉴定、大麦资源亲缘关系分析以及群体划分方面具有一定的指导意义和应用价值。同时构建了 98份江苏大麦品种的 SNP指纹图谱,验证了 KASP技术在我国大麦品种鉴定中的可行性。开发的 KASP标记能够准确、快速鉴定大麦品种,有助于大麦种质资源的科学规范管理和遗传多样性研究。

关键词:大麦;KASP标记;遗传多样性;指纹图谱;品种鉴定

Development and Application of High Efficiency KASP Markers in Barley Based on High Throughput Chip

XU Tingting, MENG Shan, ZHU Xiaopin, ZOU Shuqiong, DI Jiachun, YANG Xin, ZHU Yin, GUO Chunbin, YAN Wei

(Institute of Germplasm Resources and Biotechnology, Jiangsu Academy of Agricultural Sciences/The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm/Jiangsu Key Laboratory for Agrobiology, Nanjing 210014)

Abstract: Molecular markers are the basic tools of genetic research, which are widely used in genetic diversity research, germplasm identification, genetic map construction and gene mapping. In this study, Barley SNP 50K chip was used to detect SNP in barley core resources with wide genetic background, and a series of dimorphic SNPs with high polymorphism were selected, and 124 KASP markers were developed. 43 barley germplasms from different geographical sources were used to test their effectiveness, and 56 KASP markers were initially screened out. Eighteen high-quality KASP markers were selected based on MAF (minor allele frequency)≥0.40 and PIC (polymorphic information content)≥0.45 criteria and applied to construct phylogenetic trees of 98 Jiangsu barley varieties. The results showed that barley materials with the same geographical origin and close relatives could be grouped into one class. These results indicate that KASP markers have guiding significance and application value in barley variety identification genetic relationship analysis of barley resources and population division. At the same time, the SNP fingerprint of 98 Jiangsu barley varieties was constructed, which verified the feasibility of KASP technique in barley varieties identification in China. The developed KASP

收稿日期: 2023-12-14 网络出版日期: 2024-07-18

URL: https://doi.org/10.13430/j.cnki.jpgr.20231214001

第一作者研究方向为大麦种质资源收集保护与遗传多样性分析, E-mail: 13913024600@163.com

通信作者: 颜 伟,研究方向为作物种质资源的收集与保存, E-mail: yanwei@jaas.ac.cn

基金项目: 国家自然科学基金青年基金(32001543); 江苏省农业科技自主创新资金[CX(22)3139]; 江苏省种质资源精准鉴定评价项目 (005012691230229); 国家科技资源共享服务平台项目(NCGRC-2023-25)

Foundation projects: National Natural Science Foundation of China Youth Fund (32001543); Jiangsu Agricultural Science and Technology Innovation Fund [CX(22)3139]; Project of Precise Identification and Evaluation of Germplasm Resources in Jiangsu Province (005012691230229); National Science and Technology Resource Sharing Service Platform Project(NCGRC-2023-25)

marker can identify barley varieties accurately and quickly, which is helpful to the scientific and standardized management of barley germplasm resources and the study of genetic diversity.

Key words: barley; KASP marker; genetic diversity analysis; fingerprint; cultivar identification

大麦(Hordeum vulgare L.)是禾本科大麦属的一年生或多年生草本植物,是居于水稻、小麦和玉米之后的第四大粮食作物,主要用作粮食、饲料、啤酒原料以及医药、保健食品。在我国,大麦是藏族地区的主要粮食作物。同时大麦具有早熟、耐旱、耐盐、耐低温冷凉、耐瘠薄等特点,属于典型的模式耐盐碱作物,具有重要的生产和研究价值。随着大麦品种资源数量逐年增多,出现了同名异物或者同种异名的现象。因此提高我国大麦种质资源管理和品种保护能力对加强大麦遗传育种研究、新品种培育及保障粮食安全具有重要意义。

目前,大麦品种及纯度鉴定主要依靠田间表 型[1-3]、同工酶[2]、贮藏蛋白检测[4-5]和 DNA 分子标记 检测[6],由于大麦品种类别增加及有些品种亲缘关 系较近,难以用形态标记和生化标记快速地鉴别品 种,导致品种鉴定时间长、精确度差。而DNA分子 标记具有检测周期短、可实现高通量检测等优点, 为大麦品种鉴定提供了新的技术手段,在作物品种 真实性鉴定中已得到广泛应用。大麦品种鉴定 DNA 分子标记有 RFLP^[7-8]、RAPD^[9-12]、AFLP^[13-14]、 SSR^[15-19]、SNP^[17, 20-21] 和 InDel^[22]。 由于 RFLP、 RAPD、AFLP分子标记操作繁琐、稳定性差、周期 长,因此难以在品种鉴定中广泛应用。而SSR分子 标记具有稳定性和共显性的优点,而且标记成本 低,应用技术简单并已发布国内农业行业标准《大 麦品种鉴定技术规程 SSR 分子标记法》[23]。InDel 标记具有稳定性高、多态性高和共显性等优点,通 过简单的PCR及凝胶电泳即可进行基因分型。但 SSR标记与InDel标记在对大批量样本检测时需要 大量的人力和物力,在试验中易出现扩增丢失、带 型杂乱、模糊带型等现象,在高通量样本检测的效 率和准确率方面缺乏优势。

SNP标记具有分布广泛、遗传稳定性好且易于实现自动化等优点,目前已迅速取代传统的分子标记。高通量的 SNP检测技术包括基因芯片和竞争性等位基因特异性 PCR (KASP, kompetitive allele specific PCR)技术。目前,很多作物已经开发了商业化 SNP芯片[24-27],比如 Wheat 660K、Rice SNP50、Maize 50K、Cotton 63K等,单次位点检测量达上万个,可以作为研究作物遗传多样性、群体结构和

QTL定位的有效技术手段,缺点是当前使用成本偏高,开发难度较大。而KASP技术以其高度稳定性、准确性和低成本的特点,已经被广泛应用于大样本、高通量的SNP分型。国内外研究者已经利用KASP技术构建了水稻^[28]、玉米^[29]、棉花^[30]、甘蓝^[31]、黄瓜^[32]、葡萄^[33]等作物的核心标记体系,为相应作物的品种鉴定和品种保护等提供了便利。目前,利用SNP标记鉴定大麦品种的研究也有相关报道。Pattemore等^[20]利用质谱分析检测澳大利亚大麦品种SNP,并利用45个SNP位点构建测试品种的SNP条形码。张利莎等^[19]和徐东东等^[21]利用KASP标记对麦芽纯度及品种真实性进行了鉴定。但是将KASP标记广泛地应用在大麦种质资源鉴定、纯度检测及指纹图谱构建方面的研究还没有相关报道。

随着高通量测序技术的快速发展,大麦基因组 测序已完成[34-35],在此基础上开发了大麦Barley 9K 和 Barley 50K的 SNP 芯片, 为基因的定位和大麦分 子辅助育种提供了参考[36-38]。基因芯片可以广泛用 于种质资源鉴定、分子设计育种和大麦生物学研 究,但是基于芯片的基因分型技术相对成本较高, 尤其是样本量较多的种质资源库,因此基于芯片的 核心SNP开发KASP标记进行高效、准确和低成本 的大麦种质鉴定则显得尤为迫切。本研究利用 Barley SNP 50K 芯片对来自世界各地的具有丰富遗 传多样性的大麦核心资源进行基因分型,筛选出多 态性较高的 SNP 位点,基于这些位点设计 KASP 分 子标记,利用代表性大麦品种资源进行验证,获得了 一套均匀分布于大麦染色体上且多态性高的KASP 标记,可广泛用于大麦品种鉴别、纯度检测和指纹图 谱构建,从而促进种质资源科学管理和有序利用。

1 材料与方法

1.1 试验材料

288份地理来源广泛的大麦核心种质资源来源于江苏省农作物种质资源中期库,用于多态性 SNP检测,其中129份来自中国,156份来自澳大利亚、德国、日本等国家,3份地理来源不明^[38];挑选其中43份地理来源不同的大麦材料,包含中国大麦材料12份,国外材料31份(详见 https://doi.org/10.13430/j.cnki.jpgr. 20231214001,附表1),用于验证开发的

KASP标记的有效性。挑选江苏省的98份大麦材料(表1),用于品种鉴定及分子指纹图谱构建,其中盐城71份、扬州12份、如东7份、连云港4份、南通3份、淮安1份,其中来自盐城的大麦品种编号19与

81 名称均为98AC7,编号63 与67的大麦品种名称均为盐93031(不同批次入库保存)。上述材料均可在江苏省农业种质资源保护与利用平台网站(http://jagis.jaas.ac.cn/)查询。

表1 试验材料详细信息

Table 1 Details of experimental materials

Table 1	Details of exper	imental materials					
编号 No.	保存编号 Preservation number	名称 Name	来源地 Origin	编号 No.	保存编号 Preservation number	名称 Name	来源地 Origin
1	M3A00500001	0222×0413	江苏扬州	34	M3A00500177	盐95119	江苏盐城
2	M3A00500003	6187×91-7112	江苏扬州	35	M3A00500204	盐96066	江苏盐城
3	M3A00500004	6508×啤5	江苏扬州	36	M3A00500205	96AC14-9	江苏盐城
4	M3A00500010	大中88-91	江苏盐城	37	M3A00500210	(沪麦10号×冈21)×浙皮	江苏扬州
5	M3A00500017	苏农22×苏引麦2号	江苏扬州	38	M3A00500212	96-6404	江苏盐城
6	M3A00500019	连89-211	江苏连云港	39	M3A00500218	98AC-5-2	江苏盐城
7	M3A00500021	单60	江苏盐城	40	M3A00500224	S252×苏农22	江苏扬州
8	M3A00500027	通1310	江苏南通	41	M3A00500237	盐98051	江苏盐城
9	M3A00500042	盐96219	江苏盐城	42	M3A00500249	盐91022	江苏盐城
10	M3A00500044	2000 鉴 64	江苏盐城	43	M3A00500256	91269	江苏盐城
11	M3A00500047	通83-43	江苏南通	44	M3A00500267	单 57	江苏盐城
12	M3A00500063	盐单218	江苏盐城	45	M3A00500274	2000鉴25	江苏盐城
13	M3A00500079	单95	江苏盐城	46	M3A00500277	单55	江苏盐城
14	M3A00500085	盐89234	江苏盐城	47	M3A00500280	盐96116	江苏盐城
15	M3A00500087	单218	江苏盐城	48	M3A00500281	如东 89-35-1	江苏南通
16	M3A00500097	95AC13-25	江苏盐城	49	M3A00500283	矮早三	江苏盐城
17	M3A00500110	淮安三月黄	江苏淮安	50	M3A00500285	单6	江苏盐城
18	M3A00500111	98AC5	江苏盐城	51	M3A00500287	苏啤3号	江苏盐城
19	M3A00500113	98AC7	江苏盐城	52	M3A00500303	乌金一号	江苏盐城
20	M3A00500127	三得利5号	江苏连云港	53	M3A00500306	如东104-6	江苏南通
21	M3A00500143	盐92112	江苏盐城	54	M3A00500308	如东 88-38-1	江苏南通
22	M3A00500145	盐92137	江苏盐城	55	M3A00500311	如东8-5	江苏南通
23	M3A00500147	盐92161	江苏盐城	56	M3A00500318	96AC19-8	江苏盐城
24	M3A00500149	盐91128	江苏盐城	57	M3A00500322	如东 5485	江苏南通
25	M3A00500151	盐91143	江苏盐城	58	M3A00500328	96AC19-28	江苏盐城
26	M3A00500155	盐91253	江苏盐城	59	M3A00500330	96AC19-14	江苏盐城
27	M3A00500158	鉴 101	江苏盐城	60	M3A00500332	96AC1-17	江苏盐城
28	M3A00500159	盐92001	江苏盐城	61	M3A00500334	96AC1-19	江苏盐城
29	M3A00500160	50845	江苏扬州	62	M3A00500337	盐93039	江苏盐城
30	M3A00500161	盐95143	江苏盐城	63	M3A00500339	盐93031	江苏盐城
31	M3A00500165	连90508	江苏连云港	64	M3A00500347	盐麦二号	江苏盐城
32	M3A00500171	盐麦三号	江苏盐城	65	M3A00500349	2000品11	江苏盐城
33	M3A00500175	盐95245	江苏盐城	66	M3A00500350	盐95053	江苏盐城

编号 No.	保存编号 Preservation number	名称 Name	来源地 Origin	编号 No.	保存编号 Preservation number	名称 Name	来源地 Origin
67	M3A00500354	盐93031	江苏盐城	83	M3A00500432	噑 5	江苏盐城
68	M3A00500356	盐98115	江苏盐城	84	M3A00500438	盐92155	江苏盐城
69	M3A00500358	盐96157	江苏盐城	85	M3A00500448	盐96139	江苏盐城
70	M3A00500361	盐98-3179	江苏盐城	86	M3A00500449	盐92075	江苏盐城
71	M3A00500364	2000鉴26	江苏盐城	87	M3A00500458	盐93025	江苏盐城
72	M3A00500366	2000鉴27	江苏盐城	88	M3A00500461	苏B0001	江苏扬州
73	M3A00500367	苏农优质1号	江苏扬州	89	M3A00500463	盐91048	江苏盐城
74	M3A00500378	盐98016	江苏盐城	90	M3A00500470	优质1号	江苏连云港
75	M3A00500392	通 89-054-3	江苏南通	91	M3A00500474	泾大1号×Hiproly	江苏扬州
76	M3A00500393	如东86-703	江苏南通	92	M3A00500496	盐93032	江苏盐城
77	M3A00500397	单74	江苏盐城	93	M3A00500504	盐92076	江苏盐城
78	M3A00500398	单95168	江苏盐城	94	M3A00500506	盐96112-1	江苏盐城
79	M3A00500403	单51	江苏盐城	95	M3A00500509	扬辐 97-27	江苏扬州
80	M3A00500405	如东91-305	江苏南通	96	M3A00500511	扬辐9985	江苏扬州
81	M3A00500429	98AC7	江苏盐城	97	M3A00500515	矮单2-8	江苏盐城
82	M3A00500430	盐96134	江苏盐城	98	M3A00500518	大丰66-81	江苏盐城

1.2 KASP标记开发及筛选

采用 Illumina 公司开发的 Barley SNP 50K 芯片,包含44040个 SNP标记,对288份遗传多样性丰富的大麦资源进行全基因组芯片扫描,获得基因分型数据。对基因分型数据进行处理分析,以缺失率<10%、最小等位基因频率(MAF, minor allele frequency)>0.3的标准进行过滤,获得二态性的SNP位点。截取过滤后的 SNP位点的上下游各

200 bp共计401 bp DNA序列,与大麦参考基因组进行比对。设计和开发KASP标记,引物由南京金斯瑞生物科技有限公司合成。每个KASP引物组合设计两条SNP特异性引物(F1和F2)和一条通用引物(R),F1尾部添加能够与FAM荧光结合的特异性序列(5'-GAAGGTGACCAAGTTCATGCT-3'),F2尾部添加能够与HEX 荧光结合的特异性序列(5'-GAAGGTCGGAGTCAACGGATT-3')(表2)。

表2 KASP标记信息

Table 2 The information of KASP markers

标记 Marker	变异 碱基 SNP	染色体 Chr.	物理位置 (bp) Position	最小等位 基因频率 MAF	多态 信息 含量 PIC	引物序列 (5'-3') Primer sequence(5'-3')
KASP1-F1	T/C	1	21918164	0.49	0.50	<u>GAAGGTGACCAAGTTCATGCT</u> TGCCTTGGTGGCCTTTGCTTGCT
KASP1-F2						$\underline{GAAGGTCGGAGTCAACGGATT}GCCTTGGTGGCCTTTGCTTGCC$
KASP1-R						TAGTGCCTGACATACCTGCTGCATTGT
KASP2-F1	A/C	1	297997004	0.41	0.48	$\underline{GAAGGTGACCAAGTTCATGCT}TATAAAGCAACCATCACCGAACA$
KASP2-F2						<u>GAAGGTCGGAGTCAACGGATT</u> ATAAAGCAACCATCACCGAACC
KASP2-R						GCTGCGCGTCTGTGTGTTTATATCG
KASP3-F1	T/C	1	352406056	0.48	0.50	$\underline{GAAGGTGACCAAGTTCATGCT}TACAGATCAACCATTGTCGAGCGAT$
KASP3-F2						<u>GAAGGTCGGAGTCAACGGATT</u> ACAGATCAACCATTGTCGAGCGAC
KASP3-R						TAAGACACTTGAGGGTAAAATTGGGATG

	ル土	

标记 Marker	变异 碱基 SNP	染色体 Chr.	物理位置 (bp) Position	最小等位 基因频率 MAF	多态 信息 含量 PIC	引物序列 (5'-3') Primer sequence(5'-3')
KASP4-F1	T/C	1	489070699	0.50	0.50	<u>GAAGGTGACCAAGTTCATGCT</u> TTTCAGGAGAAATATCTTACCGTAAT
KASP4-F2						$\underline{GAAGGTCGGAGTCAACGGATT}TTCAGGAGAAATATCTTACCGTAAC$
KASP4-R						ATGCACCCTGGTTGGAAGAACGACAAG
KASP5-F1	C/G	2	532195861	0.42	0.49	$\underline{GAAGGTGACCAAGTTCATGCT}GAGTACATGCGAGCTGAATCGTC$
KASP5-F2						$\underline{GAAGGTCGGAGTCAACGGATT}GAGTACATGCGAGCTGAATCGTG$
KASP5-R						TCTGAAGCAACCAAACACGTCAGACGTC
KASP6-F1	T/C	2	746329951	0.41	0.48	$\underline{GAAGGTGACCAAGTTCATGCT}TGATTATCTGTTCCTTTACTGTCTCT$
KASP6-F2						$\underline{GAAGGTCGGAGTCAACGGATT}GATTATCTGTTCCTTTACTGTCTCC$
KASP6-R						CAACAAGGACTGGTCAAYAAATCAAATG
KASP7-F1	T/C	3	1135724	0.49	0.50	$\underline{GAAGGTGACCAAGTTCATGCT}\!ATAATACTCCTAAGGTCAGTGCACCT$
KASP7-F2						$\underline{GAAGGTCGGAGTCAACGGATT}TAATACTCCTAAGGTCAGTGCACCC$
KASP7-R						CAACCACAGAAAGTTACCAAATGGAACTC
KASP8-F1	C/G	3	27740093	0.42	0.49	$\underline{GAAGGTGACCAAGTTCATGCT}TGTAATTTTCTCATGAATAGTCTTC$
KASP8-F2						$\underline{GAAGGTCGGAGTCAACGGATT}TGTAATTTTCTCATGAATAGTCTTG$
KASP8-R						CACAAACCGTTCGTGTTTTCTCTAGGCTG
KASP9-F1	A/C	3	78306376	0.45	0.50	$\underline{GAAGGTGACCAAGTTCATGCT}CATCCTTGTMAGAGTAACTCTAGA$
KASP9-F2						$\underline{GAAGGTCGGAGTCAACGGATT}CATCCTTGTMAGAGTAACTCTAGC$
KASP9-R						GATTTCTGGGATGGACGTTTATCGGATC
KASP10-F1	T/G	3	307955242	0.42	0.49	<u>GAAGGTGACCAAGTTCATGCT</u> ACACCATCTGTTCATCCTGTTCAT
KASP10-F2						<u>GAAGGTCGGAGTCAACGGATT</u> CACCATCTGTTCATCCTGTTCAG
KASP10-R						GCAGTTNAATTTGAACTGCCAAAACATCT
KASP11-F1	A/G	3	334518553	0.40	0.48	$\underline{GAAGGTGACCAAGTTCATGCT}\!ACAAGACGATTGAAGATATGCATTCA$
KASP11-F2						$\underline{GAAGGTCGGAGTCAACGGATT}CAAGACGATTGAAGATATGCATTCG$
KASP11-R						TTAGRGACTTGTGCCAAGATACAAGAAC
KASP12-F1	T/G	3	562269534	0.42	0.49	$\underline{GAAGGTGACCAAGTTCATGCT} \underline{ACGTACCTCCTTTCTGGTTTAAAAGT}$
KASP12-F2						$\underline{GAAGGTCGGAGTCAACGGATT}\underline{ACGTACCTCCTTTCTGGTTTAAAAGG}$
KASP12-R						GTCGAATTATCAATCTAGGTACACATGTG
KASP13-F1	T/G	4	1090248	0.45	0.50	$\underline{GAAGGTGACCAAGTTCATGCT}TCTTGTCGCCGACGGGTCCGACCTTT$
KASP13-F2						$\underline{GAAGGTCGGAGTCAACGGATT}CTTGTCGCCGACGGGTCCGACCTTG$
KASP13-R						CACCTGCTTCCGCGCCCATCTCTCCGAC
KASP14-F1	A/C	4	566810803	0.44	0.49	<u>GAAGGTGACCAAGTTCATGCT</u> TGCTAAGTTTAGTTTCAATTTTAAATA
KASP14-F2						$\underline{GAAGGTCGGAGTCAACGGATT}GCTAAGTTTAGTTTCAATTTTAAATC$
KASP14-R						CGGAATACAGGAATCCGCATGGCGGGAC
KASP15-F1	T/C	5	156367557	0.47	0.50	$\underline{GAAGGTGACCAAGTTCATGCT}\underline{ATAGCTGGTTCTTTTCTTCATTCCAT}$
KASP15-F2						<u>GAAGGTCGGAGTCAACGGATT</u> TAGCTGGTTCTTTCTTCATTCCAC
KASP15-R						TATGTAGTTCATAATGAGAGAAAGGCCAC
KASP16-F1	T/C	5	348789450	0.44	0.49	<u>GAAGGTGACCAAGTTCATGCT</u> ACTACACCACTATGGAATCAGGAGAAT
KASP16-F2						<u>GAAGGTCGGAGTCAACGGATT</u> CTACACCACTATGGAATCAGGAGAAC

						表2(续)
标记 Marker	变异 碱基 SNP	染色体 Chr.	物理位置 (bp) Position	最小等位 基因频率 MAF	多态 信息 含量 PIC	引物序列 (5'-3') Primer sequence(5'-3')
KASP16-R						TGCTATGTTTATAACTCTATTACGCGATC
KASP17-F1	T/C	6	41293406	0.47	0.50	$\underline{GAAGGTGACCAAGTTCATGCT}GGATAATCTTATATGTTAAGCACAGT$
KASP17-F2						$\underline{GAAGGTCGGAGTCAACGGATT}GATAATCTTATATGTTAAGCACAGC$
KASP17-R						TCGCGGAGTAGATAAGATGCTTAACTAGG
KASP18-F1	A/G	6	92431471	0.50	0.50	$\underline{GAAGGTGACCAAGTTCATGCT}\!$
KASP18-F2						$\underline{GAAGGTCGGAGTCAACGGATT}\underline{GCTCGTAGCTACGGAAATACTCGG}$
KASP18-R						GATAAGATTGTCATAAATTGACCGATCAG

F1中下划线标出的序列(5'-GAAGGTGACCAAGTTCATGCT-3')能够与FAM荧光结合;F2中下划线标出的序列(5'-GAAGGTCGGAGTCAACGGATT-3')能够与HEX荧光结合,下同

The underlined sequence (5'-GAAGGTGACCAAGTTCATGCT-3') in F1 can bind to FAM fluorescence; The underlined sequence in F2 (5'-GAAGGTCGGAGTCAACGGATT-3') can bind to HEX fluorescence; MAF: Minor allele frequency; PIC: Polymorphic information content; The same as below

KASP 反应体系包括 DNA 模板 1 uL(浓度为 25~30 ng/µL),2×KASP master mix 2.5 µL(南京集思 慧远生物科技有限公司),KASP Assay Mix(F1浓度 为 5 µmol/L、F2 浓度为 5 µmol/L、R 为 15 µmol/L)0.125 µL,加ddH₂O至反应总体系为 5 uL。阴性对照 (NTC,no template control)反应体系中加的模板是 ddH₂O。PCR 反应程序:第一步95℃ 10 min;第二步95℃ 20 s,61~55℃ 1 min,共10个循环,每个循环降 0.6℃;第三步95℃ 20 s,55℃ 1 min,共35个循环; 第四步25℃ 30 s。PCR产物通过KASP荧光分析仪 (LGC 公司,FLUOstar Omega fluorescent plate reader)扫描分析结果。

1.3 数据分析

根据大麦品种的 KASP 标记的基因分型结果,计算最小等位基因频率、多态信息含量(PIC, polymorphic information content)^[29],挑选有效的 KASP 标记。利用 TASSEL v5.0 软件的邻接算法 (N-J, neighbor-joining method)计算大麦资源之间的遗传距离^[39],用 Figtree v1.4.3 构建聚类图。

在 Excel 中,将开发的 KASP 分子标记按照染色体顺序排列,相同染色体上的引物则依据物理位置顺序从小到大排列。根据基因分型数据赋值结果,与大麦参考基因组一致的基因型记为1,不一致的基因型记为2、杂合基因型记为3,缺失记为0,构建江苏省大麦品种的 SNP 分子指纹图谱。

2 结果与分析

2.1 SNP位点的筛选和KASP分子标记的开发

首先利用50K芯片对核心群体的288个大麦材料进行全基因组扫描,共扫描了44040个SNP位点。去除缺失率>10%,最小等位基因频率<0.3的SNP位点,共筛选出24435个SNP位点。进一步截取以上标记上下游各200bp,共401bp序列[33],比对大麦参考基因组,去除非特异性序列。以每个SNP位点上下游200bp内,不存在其他SNP位点及去除N碱基含量较高的序列为标准,在每条染色体上均匀选取SNP标记,共获取到124个SNP位点成功设计出对应的124个KASP标记(图1)。

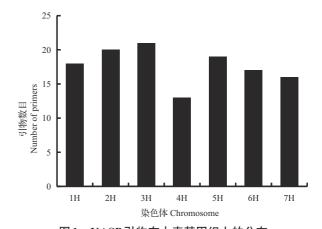
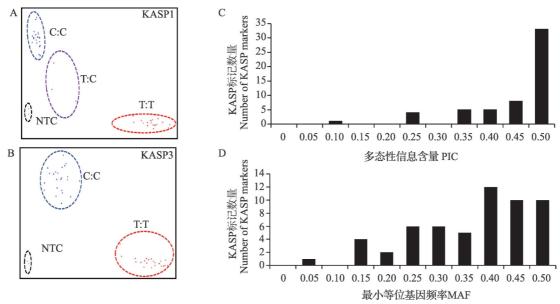



图 1 KASP 引物在大麦基因组上的分布 Fig.1 Distribution of KASP primers in barley genome

2.2 大麦 KASP 分子标记的有效性检测

利用 KASP 技术对 43 份大麦材料进行基因型 检测,其中有 56 个 KASP 标记能够将大麦材料成功 分型,且这些标记可以将相同基因型的材料聚类 (图 2A~B),同时阴性对照被聚集在一起。56 个 KASP 标记多态信息含量变化范围为 0.08~0.50,平 均值为0.43(图2C),最小等位基因频率变化范围为0.04~0.50(图2D),平均值为0.35,其中大部分KASP标记具有较高的多态信息含量,表明这些标记具有极高的多态性。其他标记则由于在一些基因型中的扩增效率不高被剔除。

A和B:分别为标记KASP1和KASP3的基因分型图;其中红色和蓝色簇状是具有FAM型和HEX型等位基因的品种;NTC:不含模板的空白对照;T:T代表含有TT基因型的品种,C:C代表含有CC基因型的品种,T:C代表含有杂合基因型TC的品种

A and B: Genotyping map of KASP1 and KASP3; Red cluster is a variety with FAM allele; Blue cluster is a variety with HEX allele; NTC: Blank control without template; T:T represents varieties containing the TT genotype, C:C represents varieties containing the CC genotype, and T:C represents varieties containing the heterozygous genotype TC

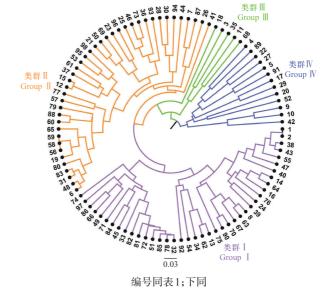
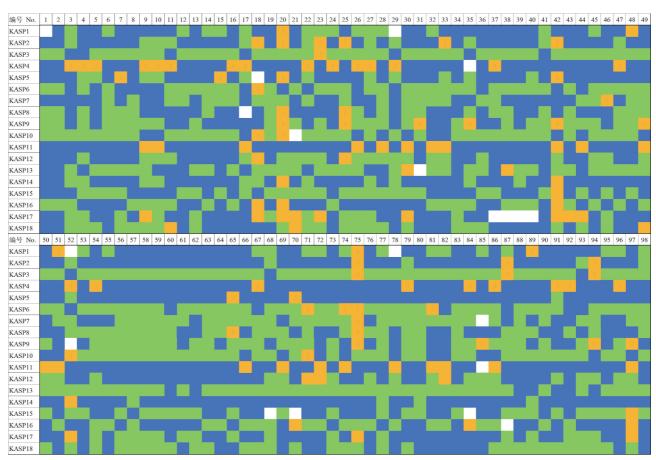

图2 KASP标记基因分型图及多态性信息含量、最小等位基因频率分析

Fig.2 The genotyping map of KASP markers and analysis of polymorphism information content and minimum allele frequency

为了提高工作效率,减少检测成本,对筛选出的 56个 KASP 标记进行遴选。以能够将 HEX 型和 FAM 型的基因型精准分型及高多态信息含量值和高分辨力,即最小等位基因频率≥0.40,多态信息含量≥0.45 为标准^[29],筛选获得 18个高质量的 KASP 标记,其多态信息含量变化范围为 0.48~0.50,平均值为 0.49,最小等位基因频率变化范围为 0.40~0.50,平均值为 0.45(表 2),表明这 18个 KASP 标记具有高特异性和高稳定性。

2.3 KASP分子标记在大麦品种鉴定中的应用

为了验证18个高质量的KASP标记在品种鉴定中的作用,对来自江苏省的98份大麦种质材料进行基因分型,基于分型结果利用Figtree v1.4.3 软件绘制98份江苏省大麦种质材料的聚类图(图3)。结果显示98份江苏大麦种质材料被划分为4个类群。类群 I 包含40份大麦种质资源,其中大部分材料来自盐城(31份),选育品种盐麦三号(编号32)、矮早三



The numbers are the same as table 1; The same as below **图 3 98** 份材料的 **KASP** 分子标记聚类分析

Fig. 3 Cluster analysis of 98 cultultivars based on KASP markers

(编号49)、苏啤3号(编号51)、盐麦二号(编号64)和单95168(编号78)聚在一起,来自南通的通1310(编号8)、通89-054-3(编号75)等5份大麦资源聚在一起。类群II中包含40份大麦种质材料,其中29份大麦材料来自盐城,包括来自不同亲本杂交的选育品系,如96AC和单系列等品系。来自如东的如东104-6(编号53)、如东89-35-1(编号48)等4份大麦资源与扬州的苏农优质1号(编号73)、扬辐97-27(编号95)等5份大麦资源被划分在类群II,表明具有相同地理来源的或者来自亲缘关系很近的品种能聚在一起。但也有例外,如扬州的大麦品种6508×啤5(编号3)划分在类群III,来自盐城的71份大麦品种中其余的11份划分在类群III,中有3份,划分在类群IV中有8份。

根据 18 个高质量的 KASP 标记(编号为 KASP1~18)组合对 98 份江苏大麦品种的基因分型数据,得到江苏大麦品种的特征 DNA 指纹图谱(图4)。指纹数据比对分析发现,KASP分子标记可以区分 98% 的江苏省内大麦品种资源,可在分子水平上有效鉴别种质资源的同名异种或者同种异名。如来自江苏盐城的大麦品种 98AC7(编号为 19 和 81),在 18 个标记中有 KASP1、KASP6、KASP8等 10 个位点存在差异;盐 93031(编号为 63 和 67),在 18 个标记中 3 个位点(KASP1、KASP4 和 KASP6)不同(表 3)。虽然这些大麦品种有相同的名称,但是 DNA 指纹数据不同,表明挑选的 KASP标记可以有效地将相同名称的不同资源在分子水平上鉴别出来。

蓝色、绿色、橙色和白色方块分别代表1、2、3和0

The blue, green, orange and white square represent the value 1,2,3 and 0, respectively

图 4 98 份江苏大麦品种的 KASP 指纹图谱数据库

Fig.4 KASP finger-printing database of 98 barley cultivars in Jiangsu

± 2	相同名称大麦品种的分子指纹图谱信	台
表3	州间名称人友前州的分十有效尽管信。	忠

 Fable 3
 Molecular fingerprinting information of barley varieties with the same name

标记 Marker	19 (98AC7)	81 (98AC7)	63 (盐93031)	67 (盐93031)	标记 Marker	19 (98AC7)	81 (98AC7)	63 (盐93031)	67 (盐93031)
KASP1	1	2	1	2	KASP10	2	1	2	2
KASP2	1	1	1	1	KASP11	1	3	1	1
KASP3	2	2	2	2	KASP12	1	2	1	1
KASP4	1	1	1	3	KASP13	2	2	2	2
KASP5	1	1	1	1	KASP14	1	1	1	1
KASP6	2	3	2	1	KASP15	2	1	1	1
KASP7	2	2	2	2	KASP16	1	2	2	2
KASP8	2	1	2	2	KASP17	2	1	1	1
KASP9	2	1	2	2	KASP18	1	1	2	2

¹代表与参考基因型一致的基因型,2代表与大麦参考基因组不一致的基因型,3代表杂合基因型;括号内为材料名称

3 讨论

种质资源是支撑种业创新,保障国家粮食安全,促进农业可持续发展的重要战略资源。对种质资源的科学规范管理,可以促进种质资源有序开发利用。基于表型的品种鉴定时间长,易受外界环境影响(温度、湿度、虫害等),利用DNA分子标记在分子水平上揭示不同种质材料之间的遗传差异,方法易行,结果可靠,不受外界环境、植物发育阶段等影响。

已经报道的用于大麦品种鉴定的DNA分子标 记有RFLP、RAPD、AFLP、SSR、InDel和SNP。由于 RFLP、RAPD、AFLP分子标记操作繁琐、稳定性差、 周期长,难以广泛应用在大麦品种鉴定。SNP是单 核苷酸变异产生的多态性,在基因组中数量多、分 布广,具有已知性、可遗传性、可检测性,通过对 SNP位点的检测,可用于目的基因的定位、克隆和 鉴定。目前采用芯片技术检测高通量的 SNP 位点, 但是该技术针对大样本进行全基因组扫描时成本 较高,而KASP标记由于探针的加入,极大节省了操 作时间,简化了步骤。利用KASP技术可以快速高 通量对作物资源进行鉴定,在一些作物中已经广泛 利用,如水稻[28]、玉米[29]、甘蓝[31]、葡萄[33]等。在大 麦中,前人利用SNP标记对澳洲大麦品种鉴定及利 用KASP技术鉴定麦芽纯度等[19-21],表明SNP位点 可以有效揭示品种间的遗传差异,但是局限于少量 的、有限的品种鉴别和纯度检测,在大麦种质资源 鉴定方面研究相对较少,而KASP技术可以广泛推 进SNP分子标记在大麦种质资源管理上的应用。

本研究基于大麦 50K 芯片对 288 份大麦核心群体资源的基因分型数据,筛选出多态性较高的 SNPs,保证了选择的位点具有足够的区分能力。基于这些位点设计 KASP 分子标记,利用其中代表性大麦资源进行验证,获得了 56 个有效的 KASP 标记,其中大部分标记具有较高的多态信息含量值 (PIC>0.40)。为了降低成本,进一步以最小等位基因频率>0.40,多态信息含量值>0.45 为遴选标准^[29],获得了 18 个高质量的 KASP 标记,其多态信息含量值变化范围为 0.48~0.50,平均值为 0.49,最小等位基因频率变化范围为 0.48~0.50,平均值为 0.45,表明开发的 KASP 标记具有极高的多态性,可用于遗传多样性分析,能够有效、准确、快速及安全地鉴定大麦品种。

利用挑选出的18个高质量的KASP标记,对来自江苏的98份大麦品种进行了KASP遗传多样性分析,聚类分析结果显示18个标记组合能够将遗传来源相近的资源聚在一起,大部分地理来源相近的遗传资源划分在同一类群中,这与利用InDel和SNP分子标记进行聚类分析的结果类似[22.38]。如来自盐城的大麦品种主要聚类被划分在类群I(31份)和类群II(29份);亲缘关系比较近的品种由于遗传相似度高聚在一起,如96AC系列的大麦品种划分在类群II,说明基于材料间遗传距离揭示品种的亲疏关系更科学。表明KASP分子标记组合可以有效构建大麦分子指纹数据库,推进种质库中大麦种质资源的规范有序管理,大麦分子指纹图谱可以揭示

¹ represents genotype that is consistent with the reference genotype, 2 represents genotype that is inconsistent with the barley reference genome, and 3 represents heterozygous genotype; The material name is in parentheses

大麦种质材料间的遗传距离,为科学利用资源提供依据。

本研究利用KASP技术构建了98份江苏大麦 品种的SNP指纹图谱来鉴定江苏大麦品种。检查 基因分型数据发现,96份江苏大麦材料具有唯一的 指纹图谱代码。在品种鉴定分析中,KASP分子标 记组合可以区分98%的供试大麦品种资源,表明现 有的位点组合能够区分绝大多数种质材料,有效揭 示了种质材料的内在遗传差异。如两份名称为 98AC7(编号为19和81)的大麦品种有10个标记 (10/18)位点信息不同,两份名称为盐93031(编号为 63和67)的大麦品种3个标记(3/18)位点信息不同, 根据差异位点数≥2[40],说明该材料是不同的种质; 而 96AC19-8 (编号 56)、96AC19-28 (编号 58)和 96AC19-14(编号59)3份资源材料差异位点数为0, 表明种质材料的遗传相似度极高,它们可能为相同 的种质,也可能在上述18个标记之外的位点上存在 差异。对于上述遗传上极为相似的姊妹系、穗行 系、近等基因材料等种质材料,需要进一步增加标 记位点数量或者结合表型加以区分或验证。

4 结论

本研究首次基于大麦高通量 50K 芯片成功开发 56个特异性强、稳定性高的 KASP 分子标记,多态信息含量和最小等位基因频率的平均值分别为 0.43、0.35,并首次利用 18 个标记构建了江苏大麦品种的 SNP 指纹图谱,能成功区分绝大多数种质材料,可根据需要增加标记数目区分姊妹系等遗传近似品种。上述 KASP 标记不仅可以用于种质资源分子指纹体系构建,对大麦种质资源进行科学有序管理,还可以广泛用于大麦品种鉴别、纯度检测和品种维权,推动种子市场健康有序发展。

参考文献

- [1] 张京.大麦种质资源描述规范和数据标准.北京:中国农业出版社,2006
 - Zhang J. Description specification and data standard of barley germplasm resources. Beijing: China Agriculture Press, 2006
- [2] 支巨振, 毕辛华, 杜克敏, 常秀兰, 杨淑惠, 任淑萍, 吴志行, 李仁凤, 赵菊英. GB/T 3543.5-1995 农作物种子检验规程-真实性和品种纯度鉴定. 北京: 全国种子总站, 1995 Zhi J Z, Bi X H, Du K M, Chang X L, Yang S H, Ren S P, Wu Z X, Li R F, Zhao J Y. GB/T 3543.5-1995 rules for agricultural seed testing-Verification of genuineness and cultivar. Beijing: The National Seed Station, 1995
- [3] 王娓辰, 林宇, 王禹, 王金成, 魏亚东, 张海滨. 澳大利亚啤

- 酒大麦品种鉴定. 检验检疫学刊, 2016, 26(4): 20-23 Wang W C, Lin Y, Wang Y, Wang J C, Wei Y D, Zhang H B. The research and identification of Austrian barley varieties.
- Journal of Inspection and Quarantine, 2016, 26(4): 20-23
 [4] 林雪琴,叶常丰,毕辛华.应用同工酶电泳法鉴定二棱大麦
- 品种的研究. 种子, 1988(3):1-7 Lin X Q, Ye C F, Bi X H. Study on identification of twoedged barley varieties by isozyme electrophoresis. Seed, 1988
- [5] 游丽华,李晓敏,王迎新,蔡国林,陆健.利用蛋白质组学技术建立澳大利亚啤酒大麦醇溶蛋白标准图谱.食品工业科技,2015,36(13):282-287
 - You L H, Li X M, Wang Y X, Cai G L, Lu J. Proteomic profile of hordeins from different varieties of Australian malting barley. Science and Technology of Food Industry, 2015, 36(13):282-287
- [6] 陈萍,李盼畔,麦丽珊,刘姣姣,何翠霞,赵淑嘉,吴小瑶,陈颖. DNA分子标记技术及其在啤酒大麦品种鉴定中的应用. 粮食与饲料工业,2017(8):63-66 Chen P, Li P P, Mai L S, Liu J J, He C X, Zhao S J, Wu X Y, Chen Y. DNA molecular marker and its application in identification of seed varieties of beer barley. Food and Feed Industry, 2017(8):63-66
- [7] Heun M, Kennedy A E, Anderson J A, Lapitan N L V, Sorrells M E, Tanksley S D. Construction of a restriction fragment length polymorphism map for barley (*Hordeum vulgare*). Genome, 1991, 34(3): 437-447
- [8] Van Hintum T J. Comparison of marker system and construction of a core collection in pedigree of European spring barley. Theoretical and Applied Genetics, 1994, 89 (7-8): 991-997
- [9] Davila J A, Sanchez M P, Loarce Y, Ferrer E. The use of random amplified microsatellite polymorphic DNA and coefficients of parentage to determine genetic relationships in barley. Genome, 1998, 41(4): 477-486
- [10] Hanif Z, Swatiz A, Khan I, Hassant G, Marwat K B, Ali S, Ishfaq Khan M. RAPD and SSR analysis of wild oats (*Avena* species) from north west frontier province of Pakistan. African Journal of Plant Science, 2008, 2(11): 133-139
- [11] 黄祥斌,杨华林.采用PCR-RAPD技术鉴定16种北美啤酒大麦.啤酒科技,2003(10): 52-54

 Huang X B, Yang H L. Identification of 16 North American beer barley by PCR-RAPD. Beer Technology, 2003 (10): 52-54
- [12] 吴亚君, 王斌, 韩建勋, 张振民, 杨海荣, 陈颖. 采用RAPD-毛细管芯片电泳法鉴定啤酒大麦品系. 食品与发酵工业, 2012, 38(2): 174-180

 Wu Y J, Wang B, Han J X, Zhang Z M, Yang H R, Chen Y. Identification of beer barley strain by RAPD-capillary chip electrophoresis. Food and Fermentation Industries, 2012, 38 (2): 174-180
- [13] 谷方红,张五九,冯景章,林智平.酿造大麦品种鉴定技术

- 的研究..啤酒科技,2003(11):27-29
- Gu F H, Zhang W J, Feng J Z, Lin Z P. Research on the identification technology of brewing barley varieties. Beer Technology, 2003(11): 27-29
- [14] 初雷. 酿酒大麦种质资源 AFLP 分子指纹图谱构建. 大连: 大连工业大学, 2011 Chu L. Construction of AFLP molecular fingerprints of wine barley germplasm resources. Dalian: Dalian Polytechnic University, 2011
- [15] Russel J R, Fuller J D, Macaulay M, Hatz B G, Jahoor A, Powell W, Waugh R. Direct comparisons of level of genetic variation among barley accessions detected by RFLPs, AFLPs, SSRs and RAPD. Theoretical and Applied Genetics, 1997, 95: 714-722
- [16] 朱彩梅, 张京. 应用 SSR 标记分析中国糯大麦种质的遗传多样性. 植物遗传资源学报, 2010, 11(1): 57-64
 Zhu C M, Zhang J. Genetic diversity analysis of waxy barley in China based on SSR markers. Journal of Plant Genetic Resources, 2010, 11(1): 57-64
- [17] 王艳平,沈奇,张继红,李华勇,吴燕.大麦DUS测试标准品种的遗传多样性分析及指纹图谱的构建.麦类作物学报,2013,33(2):273-278

 Wang Y P, Shen Q, Zhang J H, Li H Y, Wu Y. Genetic diversity analysis and building of DNA fingerprints of barley standard varieties in DUS testing based on SSR markers. Journal of Triticeae Crops, 2013, 33(2): 273-278
- [18] 杨振华. 啤酒大麦 SSR 分子标记 PCR 反应体系的建立与优化. 黑龙江农业科学, 2015(5):26-29
 Yang Z H. Establishment and optimization of SSR molecular marker PCR reaction system for beer barley. Heilongjiang Agricultural Sciences, 2015(5): 26-29
- [19] 张利莎, 董国清, 扎桑, 卓嘎, 王德良, 谷方红, 袁兴森, 张京, 郭刚刚. 基于 EST-SSR 和 SNP 标记的大麦麦芽纯度检测. 作物学报, 2015, 41(8): 1147-1154

 Zhang L S, Dong G Q, Zha S, Zhuo G, Wang D L, Gu F H, Yuan X M, Zhang J, Guo G G. EST-SSR and SNP markers based barley malt purity detection . Acta Agronomica Sinica, 2015, 41(8): 1147-1154
- [20] Pattemore J A, Rice N, Marshall D F, Waugh R, Henry R J. Cereal variety identification using MALDI-TOF mass spectrometry SNP genotyping. Journal of Cereal Science, 2010, 52(3): 356-361
- [21] 徐东东,张利莎,董国清,谷方红,王德良,袁兴森,张京,郭刚刚. SNP标记分型与品质分析联合的麦芽纯度及品种真实性鉴定. 啤酒科技, 2015(1): 28-31

 Xu D D, Zhang L S, Dong G Q, Gu F H, Wang D L, Yuan X M, Zhang J, Guo G G. Identification of malt purity and variety authenticity combined with SNP marker typing and quality analysis. Beer Technology, 2015(1): 28-31
- [22] 徐婷婷, 汪巧玲, 邹淑琼, 狄佳春, 杨欣, 朱银, 赵涵, 颜伟. 基于高通量测序的大麦 InDel 标记开发及应用. 作物学报, 2020, 46(9):1351-1361

- Xu T T, Wang Q L, Zou S Q, Di J C, Yang X, Zhu Y, Zhao H, Yan W. Development and application of InDel markers based on high throughput sequencing in barley. Acta Agronomica Sinica, 2020, 46(9):1351-1361
- [23] 王艳平, 沈奇, 堵苑苑, 张继红, 李华勇, 王显生, 吴燕, 戴剑. NY/T 2466-2013 大麦品种鉴定技术规程 SSR 分子标记法. 南京: 江苏省农业科学院, 2013
 Wang Y P, Shen Q, Du Y Y, Zhang J H, Li H Y, Wang X S, Wu Y, Dai J. NY/T 2466-2013 identification of barley varieties-SSR marker method. Nanjing: Jiangsu Academy of Agricultural Sciences, 2013
- [24] Sun C W, Dong Z D, Zhao L, Ren Y, Zhang N, Chen F. The wheat 660K SNP array demonstrates great potential for marker assisted selection in polyploid wheat. Plant Biotechnology Journal, 2020, 18(6): 1354-1360
- [25] Chen H D, Xie W B, He H, Yu H H, Chen W, Li J, Yu R B, Yao Y, Zhang W H, He Y Q, Tang X Y, Zhou F S, Deng X W, Zhang Q F. A high-density SNP genotyping array for rice biology and molecular breeding. Molecular Plant, 2014, 7 (3): 541-553
- [26] Xu C, Ren Y H, Jian Y Q, Guo Z F, Zhang Y, Xie C X, Fu J J, Wang H W, Wang G Y, Xu Y B, Li P, Zou C. Development of a maize 55 K SNP array with improved genome coverage for molecular breeding. Molecular Breeding, 2017, 37(3): 1-12
- [27] Hulse-Kemp A M, Lemm J, Plieske J, Ashrafi H, Buyyarapu R, Fang D D, Frelichowski J, Giband M, Hague S, Hinze L L, Kochan K J, Riggs P K, Scheffler J A, Udall J A, Ulloa M, Wang S S, Zhu Q H, Bag S K, Bhardwaj A, Burke J J, Byers R L, Claverie M, Gore M A, Harker D B, Islam M S, Jenkins J N, Jones D C, Lacape J M, Llewellyn D J, Percy R G, Pepper A E, Poland J A, Mohan Rai K, Sawant S V, Singh S K, Spriggs A, Taylor J M, Wang F, Yourstone S M, Zheng X, Lawley C T, Ganal M W, Van Deynze A, Wilson I W, Stelly D M. Development of a 63K SNP array for cotton and high-density mapping of intraspecific and interspecific populations of Gossypium spp. G3 (Bethesda), 2015, 5(6): 1187-1209
- [28] Yang G L, Chen S P, Chen L K, Sun K, Huang C H, Zhou D H, Huang Y T, Wang J F, Liu Y Z, Wang H, Chen Z Q, Guo T. Development of a core SNP arrays based on the KASP method for molecular breeding of rice. Rice, 2019, 12(1): 21
- [29] 陆海燕,周玲,林峰,王蕊,王凤格,赵涵.基于高通量测序 开发玉米高效 KASP分子标记.作物学报,2019,45(6): 872-878
 - Lu H Y, Zhou L, Lin F, Wang R, Wang F G, Zhao H. Development of efficient KASP molecular markers based on high throughput sequencing in maize. Acta Agronomica Sinica, 2019, 45(6): 872-878
- [30] 匡猛,王延琴,周大云,马磊,方丹,徐双娇,杨伟华,魏守军,马峙英.基于单拷贝SNP标记的棉花杂交种纯度高通量检测技术.棉花学报,2016,28(3):227-233

- Kuang M, Wang Y Q, Zhou D Y, Ma L, Fang D, Xu S J, Yang W H, Wei S J, Ma Z Y. High-throughput genotyping assay technology for cotton hybrid purity based on single-copy SNP markers. Cotton Science, 2016, 28(3): 227-233
- [31] Li Z Y, Yu H L, Li X, Zhang B, Ren W J, Liu X P, Fang Z Y, Yang L M, Zhuang M, Lv H H, Zhang Y Y. Kompetitive allele-specific PCR (KASP) genotyping and heterotic group classification of 244 inbred lines in cabbage (*Brassica oleracea* L. var. capitata). Euphytica, 2020, 216(106):1086-1099
- [32] Zhang J, Yang J J, Zhang L K, Luo J, Zhao H, Zhang J N, Wen C L. A new SNP genotyping technology target SNP-seq and its application in genetic analysis of cucumber varieties. Scientific Reports, 2020, 10(1): 275-305
- [33] 王富强, 张建, 温常龙, 樊秀, 张颖, 孙磊, 刘崇怀, 姜建福. 基于 KASP 标记的葡萄品种鉴定. 中国农业科学, 2021, 54(13): 2830-2842

 Wang F Q, Zhang J, Wen C L, Fan X, Zhang Y, Sun L, Liu C H, Jiang J F. Identification of grape cultivars based on KASP markers. Scientia Agricultura Sinica, 2021, 54(13): 2830-2842
- [34] Mayer K F, Waugh R, Brown J W, Schulman A, Langridge P, Platzer M, Fincher G B, Muehlbauer G J, Sato K, Close T J, Wise R P, Stein N. A physical, genetic and functional sequence assembly of the barley genome. Nature, 2012, 491 (7426):711-716
- [35] Mascher M, Gundlach H, Himmelbach A, Beier S, Twardziok SO, Wicker T, Radchuk V, Dockter C, Hedley PE, Russell J, Bayer M, Ramsay L, Liu H, Haberer G, Zhang XQ, Zhang Q, Barrero RA, Li L, Taudien S, Groth M, Felder M, Hastie A, Šimková H, Staňková H, Vrána J, Chan S, Muñoz-Amatriaín M, Ounit R, Wanamaker S, Bolser D, Colmsee C, Schmutzer T, Aliyeva-Schnorr L, Grasso S, Tanskanen J, Chailyan A, Sampath D, Heavens D, Clissold L, Cao S, Chapman B, Dai F, Han Y, Li H, Li X,

- Lin C, McCooke J K, Tan C, Wang P, Wang S, Yin S, Zhou G, Poland J A, Bellgard M I, Borisjuk L, Houben A, Doležel J, Ayling S, Lonardi S, Kersey P, Langridge P, Muehlbauer G J, Clark M D, Caccamo M, Schulman A H, Mayer K F X, Platzer M, Close T J, Scholz U, Hansson M, Zhang G, Braumann I, Spannagl M, Li C, Waugh R, Stein N. A chromosome conformation capture ordered sequence of the barley genome. Nature, 2017, 544(7651): 427-433
- [36] Bayer M M, Rapazote-Flores P, Ganal M, Hedley P E, Macaulay M, Plieske J, Ramsay L, Russell J, Shaw P D, Thomas W, Waugh R. Development and evaluation of a barley 50k iSelect SNP Array. Frontiers in Plant Science, 2017, 8: 1792
- [37] Hazzouri K M, Khraiwesh B, Amiri K M A, Pauli D, Blake T, Shahid M, Mullath S K, Nelson D, Mansour A L, Salehi-Ashtiani K, Purugganan M, Masmoudi K. Mapping of *HKT1*; 5 gene in barley using GWAS approach and its implication in salt tolerance mechanism. Frontiers in Plant Science, 2018, 9:156
- [38] Xu T T, Meng S, Zhu X P, Di J C, Zhu Y, Yang X, Yan W. Integrated GWAS and transcriptomic analysis reveal the candidate salt-responding genes regulating Na⁺/K⁺ balance in barley (*Hordeum vulgare* L.). Frontiers in Plant Science, 2023, 13:1004477
- [39] Saitou N, Nei M. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Molecular Biology & Evolution, 1987, 4(4): 406-425
- [40] 庄杰云,施勇烽,吕波,陈能,杨坤,应杰政,曾瑞珍.NY/T 1433-2007 水稻品种鉴定-DNA 指纹方法.杭州:中国水稻研究所,2007
 - Zhuang J Y, Shi Y F, Lv B, Chen N, Yang K, Ying J Z, Zeng R Z. NY/T 1433-2007 identification of rice (*Oryza sativa* L.) varieties using microsatellite markers. Hangzhou: China National Rice Research Institute, 2007

附表 1 本研究中 288 份大麦材料信息及用于检测 KASP 分子标记有效性的 43 份大麦材料

Schedule 1 The information of 288 barley germplasms and 43 barley materials used to detect the effectiveness of KASP molecular markers in present study

编号		名称	来源地	编号	 保存编号	名称	来源地
No.	保存编号 Preservation number	Name	Origin	No.	Preservation number	Name	Origin
1	M3A00500006	AC Bacon	加拿大	145	M3A00501968		中国青海
2	M3A00500008	九州二条	日本	146	M3A00501970	小金沙龙狗尾(甘孜)	中国四川
3	M3A00500012	四国裸 89 号	日本	147	M3A00501979	涅如姆扎 ZDM7701	中国西藏
4	M3A00500014	AC Burman	加拿大	148	M3A00501985	大粒 98-714(5)	墨西哥
5	M3A00500016	三月黄	中国浙江	149	M3A00501986	权稞青稞	中国西藏
6	M3A00500029	<u>Araplies</u>	加拿大	150	M3A00502003	大通白六棱	中国青海
7	M3A00500030	<u>行幸大麦</u>	日本	151	M3A00502005	小青稞 (金塔)	中国甘肃
8	M3A00500032	<u>旱地兰</u>	中国	152	M3A00502008	嵊县无芒大麦	中国浙江
9	M3A00500034	京裸 11	中国北京	153	M3A00502009	浙原 18	中国浙江
10	M3A00500036	<u>宜平四棱大麦</u>	中国云南	154	M3A00502010	秀麦3号	中国浙江
11	M3A00500038	柱大麦	中国河南	155	M3A00502011	嵊县 209	中国浙江
12	M3A00500040	宾县皮4号	中国四川	156	M3A00502012	临海光头大麦	中国浙江
13	M3A00500045	<u>盐选一号</u>	中国江苏	157	M3A00502014	玉环洋大麦	中国浙江
14	M3A00500056	<u>C2118</u>	加拿大	158	M3A00502016	紫皮大麦	中国
15	M3A00500057	品 H0909	中国北京	159	M3A00502017	新民大麦	中国
16	M3A00500058	六棱黑青稞	中国西藏	160	M3A00502018	甘木二条	日本
17	M3A00500059	济皮 02	中国山东	161	M3A00502019	冬青 15 号	中国西藏
18	M3A00500060	<u>孔措蓝</u>	中国西藏	162	M3A00502022	浙农白壳	中国浙江
19	M3A00500064	龙中黄	中国西藏	163	M3A00502023	藏 83062	中国西藏
20	M3A00500065	<u>GAIRDNER</u>	澳大利亚	164	M3A00502074	Morex	美国
21	M3A00500066	龙中蓝	中国西藏	165	M3A00502230	鄂 91049	中国湖北
22	M3A00500067	<u>鬼怒3号</u>	日本	166	M3A00502298	Franklin	澳大利亚

23	M3A00500068	克山城区大麦	中国黑龙江	167	M3Y00500003	Mirra	德国
24	M3A00500069	关东二条 22 号	日本	168	M3Y00500011	MARION	德国
25	M3A00500071	Kinuya tata	日本	169	M3Y00500012	KASKADE	德国
26	M3A00500074	武威黑大麦	中国甘肃	170	M3Y00500013	HALCYON	英国
27	M3A00500076	拜泉皮1号	中国黑龙江	171	M3Y00500015	Rainbow	英国
28	M3A00500080	美 97-1338	美国	172	M3Y00500019	AKKA	瑞典
29	M3A00500084	<u>倍取 10 号</u>	日本	173	M3Y00500020	Micmac	加拿大
30	M3A00500088	麻青稞	中国青海	174	M3Y00500021	Birka	加拿大
31	M3A00500093	驻 87-3-2	中国河南	175	M3Y00500024	TOKAK	土耳其
32	M3A00500096	安吉落芒毛大麦	中国浙江	176	M3Y00500026	WINTERMALT	美国
33	M3A00500098	八楞子大麦	中国	177	M3Y00500028	FLAMENCO	法国
34	M3A00500099	盐 91128	中国江苏	178	M3Y00500036	PANDA	法国
35	M3A00500102	长芒六棱露仁	中国	179	M3Y00500039	KARAT	捷克
36	M3A00500107	西海皮 44 号	日本	180	M3Y00500042	ZAVET-3	前苏联
37	M3A00500108	沪麦 4 号	中国上海	181	M3Y00500044	HORDEUM SPONTANEUM VAR SPONTANEUM	德国
38	M3A00500112	济南火烧头露仁	中国山东	182	M3Y00500047	ATHS	埃及
39	M3A00500114	洛松	中国	183	M3Y00500048	SHANNON	澳大利亚
40	M3A00500116	耐盐 C2118	中国北京	184	M3Y00500050	GALLEON	澳大利亚
41	M3A00500118	嵊县无芒六棱	中国浙江	185	M3Y00500052	MELUSINE	法国
42	M3A00500120	绥定青稞	中国四川	186	M3Y00500056	ABLYN	澳大利亚
43	M3A00500122	泰顺四棱米麦	中国浙江	187	M3Y00500057	ABUSIR	埃及
44	M3A00500124	天台白四棱	中国浙江	188	M3Y00500062	ADORRA	奥地利
45	M3A00500128	新登蒙古麦	中国内蒙古	189	M3Y00500064	AIM	埃及
46	M3A00500130	秀 9560	中国浙江	190	M3Y00500067	AKELA	德国
47	M3A00500132	义乌早大麦	中国浙江	191	M3Y00500068	AKER	美国
48	M3A00500134	永嘉元麦	中国浙江	192	M3Y00500069	ALBERT	法国
			·				

49	M3A00500136	御岛裸	日本	193	M3Y00500070	ALBERTA 1	加拿大
50	M3A00500144	红露仁青稞	中国西藏	194	M3Y00500072	ALFA	丹麦
51	M3A00500146	崇信春大麦	中国甘肃	195	M3Y00500075	ALGERIA 6	阿尔及利亚
52	M3A00500150	鉴 35 (元麦)	中国江苏	196	M3Y00500077	ALKAR	克罗地亚
53	M3A00500152	黄青稞	中国西藏	197	M3Y00500080	ANOIDIUM	阿根廷
54	M3A00500156	<u>U.S.D.A.2474</u>	美国	198	M3Y00500084	ARAMIR	荷兰
55	M3A00500162	临海老来红	中国浙江	199	M3Y00500088	ARGENTINE	阿根廷
56	M3A00500168	绵阳 87-10	中国四川	200	M3Y00500089	ARIANA	突尼斯
57	M3A00500173	不知梅雨	日本	201	M3Y00500098	ASPA	德国
58	M3A00500174	野生皮大麦-1	中国西藏	202	M3Y00500100	ATHENAIS	塞浦路斯
59	M3A00500181	乐啤 4号	中国四川	203	M3Y00500112	BADGER	墨西哥
60	M3A00500182	北青三号	中国西藏	204	M3Y00500119	BALODI	英国
61	M3A00500184	紫青稞	中国青海	205	M3Y00500122	BANNACKY II	捷克
62	M3A00500185	美丽黄金	日本	206	M3Y00500140	BERAC	荷兰
63	M3A00500193	MORRISON	美国	207	M3Y00500145	BLACK EGYPTIAN	美国
64	M3A00500202	POCO(澳)	澳大利亚	208	M3Y00500152	BOHEMIAN	奥地利
65	M3A00500219	凉城大粒洋大麦	中国内蒙古	209	M3Y00500159	Boyer	美国
66	M3A00500221	宽颖裸麦	中国	210	M3Y00500166	BUCHER	伊拉克
67	M3A00500223	敖德萨	苏联	211	M3Y00500187	CHEVRON	瑞士
68	M3A00500229	懒黄种	中国西藏	212	M3Y00500247	FREJA	瑞典
69	M3A00500233	KLAGES	美国	213	M3Y00500252	Gateway	加拿大
70	M3A00500241	沪 01-2946	中国上海	214	M3Y00500257	Glacier	美国
71	M3A00500244	浙农大3号	中国浙江	215	M3Y00500266	GOLDMARKER	英国
72	M3A00500245	哈铁系1号	中国黑龙江	216	M3Y00500465	ISABELLA	德国
73	M3A00500252	矮秆-4	中国	217	M3Y00500468	DIAMOND	加拿大
74	M3A00500263	<u>早熟3号</u>	日本	218	M3Y00500471	CAMEO	英国

75	M3A00500271	单 3	中国江苏	219	M3Y00500472	VISTA	英国
76	M3A00500276	驻 112	中国河南	220	M3Y00500473	BONITA	乌拉圭
77	M3A00500292	短钩裸大麦	中国	221	M3Y00500475	PARWAN	澳大利亚
78	M3A00500294	甘啤2号	中国甘肃	222	M3Y00500482	ARABIAN BLUE	澳大利亚
79	M3A00500298	秀麦2号	中国浙江	223	M3Y00500486	BARBLESS	美国
80	M3A00500300	新啤一号	中国新疆	224	M3Y00500487	BLACK 2 ROW-HULLED	
81	M3A00500307	<u>关东二条 19 号</u>	日本	225	M3Y00500497	CHALET	瑞士
82	M3A00500335	<u>TALLON</u>	澳大利亚	226	M3Y00500499	CLAUDE	加拿大
83	M3A00500346	KAPUTOR	澳大利亚	227	M3Y00500501	EMMA	荷兰
84	M3A00500371	星胜 NO.1	中国山东	228	M3Y00500502	FAMESH	美国
85	M3A00500373	草麦	中国	229	M3Y00500504	FAVORIT	捷克斯洛伐克
86	M3A00500375	港啤1号	中国江苏	230	M3Y00500507	GAZELLE	加拿大
87	M3A00500377	沪麦 12 号	中国上海	231	M3Y00500509	GOLDEN MELON	日本
88	M3A00500382	<u> 编检-4</u>	日本	232	M3Y00500510	GOLDTHORPE SPRATT	英国
89	M3A00500387	<u>SCHOONER</u>	澳大利亚	233	M3Y00500511	GUYMALAYE	丹麦
90	M3A00500422	通鉴 43	中国江苏	234	M3Y00500514	HATVANI	匈牙利
91	M3A00500435	Mikanwgold	日本	235	M3Y00500518	HEINES HANNA	德国
92	M3A00500440	莆 895067	中国福建	236	M3Y00500521	HEY SPECIAL	葡萄牙
93	M3A00500443	<u>LARA</u>	澳大利亚	237	M3Y00500523	HILAND	美国
94	M3A00500444	浙皮1号	中国浙江	238	M3Y00500524	HISPONT	德国
95	M3A00500445	<u>NAMOI</u>	美国	239	M3Y00500535	LUBAS	伊拉克
96	M3A00500459	通麦 10 号	中国江苏	240	M3Y00500542	ORGE (ESPERANCE)	摩洛哥
97	M3A00500466	<u>Gobernadora</u>	英国	241	M3Y00500550	PUSA NO.1	印度
98	M3A00500472	吉 8701	中国吉林	242	M3Y00500551	RAGUSA B	前南斯拉夫
99	M3A00500483	乐清洋大麦	中国浙江	243	M3Y00500552	RASPUT	俄罗斯
100	M3A00500500	米麦 114	中国浙江	244	M3Y00500557	SLOVAK	加拿大

101	M3A00500503	矮脚二棱	中国	245	M3Y00500561	SPARTAN (DEHISCENT AWN)	美国
102	M3A00500505	扬饲麦1号	中国江苏	246	M3Y00500566	STEVELAND	美国
103	M3A00500512	粑地虎	中国	247	M3Y00500577	FORREST (USA)	美国
104	M3A00500514	单二	中国江苏	248	M3Y00500582	ULANDRA	澳大利亚
105	M3A00500516	矮壮 21	中国江苏	249	M3Y00500583	SHERPA	英国
106	M3A00500519	花 11	中国上海	250	M3Y00500588	GOLD MEDAL	德国
107	M3A00500520	蒙啤一号	中国内蒙	251	M3Y00500590	H. DISTICHUM NUTANS	葡萄牙
108	M3A00500679	BARI287		252	M3Y00500597	CANADA 574234	加拿大
109	M3A00500909	TRADITION	美国	253	M3Y00500603	JAPAN 47C11-24	日本
110	M3A00500911	LEGACY	加拿大	254	M3Y00500608	H.SPONT. X-15	以色列
111	M3A00500919	COLLINS		255	M3Y00500611	HERMON	以色列
112	M3A00501217	盐 05023	中国江苏	256	M3Y00500613	WINCHESTER	美国
113	M3A00501225	扬辐 7110	中国江苏	257	M3Y00500619	TAPGOLBORI	韩国
114	M3A00501226	如东 203-1	中国如东	258	M3Y00500621	HOHENFINOWER	德国
115	M3A00501227	莆 848104	中国福建	259	M3Y00500623	TURKEY 568	土耳其
116	M3A00501228	驻 06095-2-1	中国河南	260	M3Y00500626	GOLDIE	瑞典
117	M3A00501229	鄂大麦 32122	中国湖北	261	M3Y00500628	HEITPAS-5	美国
118	M3A00501230	黑 09-26	中国黑龙江	262	M3Y00500631	MAMLUK	苏联
119	M3A00501231	驻大麦5号	中国河南	263	M3Y00500632	DAEJINBORI	韩国
120	M3A00501233	印度矮生	印度	264	M3Y00500635	CHOCHALUNG	尼泊尔
121	M3A00501277	丰农啤1号	中国江苏	265	M3Y00500637	ACUMAI-89	巴西
122	M3A00501278	通 0306	中国江苏	266	M3Y00500641	VIOLA	德国
123	M3A00501290	保大麦 13 号	中国云南	267	M3Y00500642	ARUPO S	墨西哥
124	M3A00501299	扬农啤2号	中国江苏	268	M3Y00500643	AGNETA	瑞典
125	M3A00501716	盐 2013 品 15	中国江苏	269	M3Y00500653	GURZAN	阿富汗
126	M3A00501718	盐丰1号	中国江苏	270	M3Y00500659	PALLIDUM 043	乌克兰
			·				

127	M3A00501720	盐黑1号	中国江苏	271	M3Y00500661	RUSSIA	美国
128	M3A00501815	康青9号	中国四川	272	M3Y00500668	KHEMUS	保加利亚
129	M3A00501820	昆仑 14	中国青海	273	M3Y00500671	WHITE NAKED ATLAS - SUSPECT!!	埃塞俄比亚
130	M3A00501909	民和长芒青稞	中国青海	274	M3Y00500681	JASPIS (SPRING)	捷克
131	M3A00501919	萨加青稞	中国青海	275	M3Y00500683	LUKJANOVAE	前苏联
132	M3A00501925	湟源蓝青稞	中国青海	276	M3Y00500684	CHEPUA	尼泊尔
133	M3A00501928	西宁红服泥	中国青海	277	M3Y00500706	AKHELOL 1	保加利亚
134	M3A00501929	无皮青稞(甘南)	中国甘肃	278	M3Y00500707	H.VULG. VAR PALLIDUM	阿尔及利亚
135	M3A00501930	甘孜白六棱	中国四川	279	M3Y00500711	LAND RACE 3832/29	澳大利亚
136	M3A00501933	苏裸麦1号	中国青海	280	M3Y00500716	KIMALUNG	尼泊尔
137	M3A00501938	勾芒白青稞	中国青海	281	M3Y00500720	藏青 85	中国西藏
138	M3A00501941	长身子青稞(甘南)	中国青海	282	M3Y00500723	海盐大麦	中国浙江
139	M3A00501942	藏 830563	中国西藏	283	M3Y00500727	泰兴 8425	中国江苏
140	M3A00501949	足捉春青稞(甘孜)	中国四川	284	M3Y00500737	RIHANE 'S'	叙利亚
141	M3A00501953	甘青1号	中国甘肃	285	M3Y00500743	PUSA R1	印度
142	M3A00501954	珉县青稞	中国青海	286	M3Y00500747	SPONTANEUM 2	伊朗
143	M3A00501957	循化黑青稞	中国青海	287	M3Y00500756	KELT	以色列
144	M3A00501962	矮杆齐	中国青海	288	M3Y00500759	CHALUS	伊朗

注:"——"代表未找到该品种地理来源。用于检测引物有效性的 43 份大麦种质用下划线标示。

Note: "——" means that the geographical origin of the species was not found.43 barley germplasms were underlined to detect primer validity.